
SecureKeeper: Confidential ZooKeeper using Intel SGX

Stefan Brenner
TU Braunschweig, Germany

brenner@ibr.cs.tu-bs.de

Colin Wulf
TU Braunschweig, Germany

cwulf@ibr.cs.tu-bs.de

David Goltzsche
TU Braunschweig, Germany
goltzsche@ibr.cs.tu-bs.de

Nico Weichbrodt
TU Braunschweig, Germany

weichbr@ibr.cs.tu-bs.de

Matthias Lorenz
TU Braunschweig, Germany

mlorenz@ibr.cs.tu-bs.de

Christof Fetzer
TU Dresden, Germany

christof.fetzer@tu-dresden.de

Peter Pietzuch
Imperial College London, UK

prp@imperial.ac.uk

Rüdiger Kapitza
TU Braunschweig, Germany

rrkapitz@ibr.cs.tu-bs.de

ABSTRACT
Cloud computing, while ubiquitous, still suffers from trust
issues, especially for applications managing sensitive data.
Third-party coordination services such as ZooKeeper and
Consul are fundamental building blocks for cloud applica-
tions, but are exposed to potentially sensitive application
data. Recently, hardware trust mechanisms such as Intel’s
Software Guard Extensions (SGX) offer trusted execution
environments to shield application data from untrusted soft-
ware, including the privileged Operating System (OS) and
hypervisors. Such hardware support suggests new options
for securing third-party coordination services.

We describe SecureKeeper, an enhanced version of the
ZooKeeper coordination service that uses SGX to pre-
serve the confidentiality and basic integrity of ZooKeeper-
managed data. SecureKeeper uses multiple small enclaves
to ensure that (i) user-provided data in ZooKeeper is al-
ways kept encrypted while not residing inside an enclave,
and (ii) essential processing steps that demand plaintext ac-
cess can still be performed securely. SecureKeeper limits
the required changes to the ZooKeeper code base and re-
lies on Java’s native code support for accessing enclaves.
With an overhead of 11%, the performance of SecureKeeper
with SGX is comparable to ZooKeeper with secure commu-
nication, while providing much stronger security guarantees
with a minimal trusted code base of a few thousand lines of
code.

CCS Concepts
•Security and privacy → Distributed systems security;

Keywords
Cloud Computing, Intel SGX, Apache ZooKeeper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware’16, December 12 - 16, 2016, Trento, Italy
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4300-8/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2988336.2988350

1. INTRODUCTION
Cloud computing has become ubiquitous due to its bene-

fits to both cloud customers and providers [1]. Using public
cloud resources, however, requires customers to fully trust
the provided software and hardware stacks as well as the
cloud administrators. This forms an inhibitor when sensi-
tive data must be processed [2, 3].

With Software Guard Extensions (SGX), Intel recently re-
leased a new technology [4] for addressing trust issues that
customers face when outsourcing services to off-site loca-
tions. Based on an instruction set extension, it allows the
creation of one or more trusted execution environments—
called enclaves—inside applications. Thereby, the plaintext
of enclave-protected data is only available for computation
inside the CPU, and it is encrypted as soon as the data leaves
the CPU. This way enclave-residing data is even guarded
against unauthorized accesses by higher privileged code and
attackers with administrative rights and physical access.

While enclaves were originally designed to host tailored
code for specific tasks, e.g. digital rights or password man-
agement [5], Baumann et al. [6] proposed Haven that ex-
ecutes unmodified legacy Windows applications inside en-
claves. These application enclaves are convenient for secur-
ing entire legacy applications but have two significant draw-
backs: (i) current SGX-capable CPUs restrict the maximum
memory footprint of all enclaves to 128 MB. If an applica-
tion has a larger memory footprint, an SGX-specific form of
in-memory paging between trusted and untrusted memory
is required, which requires costly re-encryption of enclave
pages with a substantial performance overhead; and (ii) by
placing whole applications and associated system support in-
side an enclave, the resulting large trusted code base (TCB)
poses a risk of including security relevant vulnerabilities [7].

Based on these observations, we argue that application
enclaves that contain entire applications are a poor fit for
legacy services if tailored solutions are easy to implement
and integrate. In particular, this applies to existing data-
handling services that receive, store and return data on be-
half of clients while performing limited data processing. Ex-
amples include simple key-value stores [8], web servers [9–
11], and, as highlighted in this paper, coordination services
such as ZooKeeper [12]. For such services, data confiden-
tiality and basic integrity can be preserved using small spe-
cialized enclaves, which can be integrated with the original
code base with only few changes.

© ACM, 2016. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the proceedings of the 17th ACM Middleware conference (2016).

http://dx.doi.org/10.1145/2988336.2988350

http://dx.doi.org/10.1145/2988336.2988350
http://dx.doi.org/10.1145/2988336.2988350


ZooKeeper is a crucial building block for many distributed
applications, e.g. used as naming service, for configuration
management, general message exchange and coordination
tasks. It therefore manages sensitive application informa-
tion, i.e., including access tokens and credentials when used
for configuration management. Albeit typically not user fac-
ing, ZooKeeper constitutes a key component in public cloud
infrastructures that must be secured against attacks, espe-
cially data theft carried out by insiders.

As a data-handling service, ZooKeeper features a simple
file system like API, with some data processing functional-
ity. Thus, data managed by ZooKeeper can be processed in
an encrypted state most of the time and only occasionally
plaintext access is necessary. This functionality needs to be
factored out and executed under the protection of SGX. In
contrast to application enclaves, this way all data handling
code that does not perform data processing is removed from
the TCB. For ZooKeeper, this includes the entire Operating
System (OS), the Java runtime environment as well as most
of the original service implementation itself. Furthermore,
as data stays encrypted most of the time, it can be stored
outside of enclaves, only adding to the memory footprint
of the enclave when required. This leads to substantially
smaller enclaves, staying within the bounds of the 128 MB
limit of total enclave memory resulting in good performance.

We describe SecureKeeper, an SGX-based ZooKeeper
extension that demonstrates how a complex data-handling
service can be secured using SGX. SecureKeeper preserves
confidentiality and provides basic integrity of service data,
even against privileged code and attackers with physical
access. These security guarantees are enforced through a
minimally-invasive integration of two enclave types: (i) an
entry enclave is instantiated for each client and responsible
for protecting the client-replica connection and the data se-
curity of the ZooKeeper data store; (ii) a counter enclave is
instantiated only once at the leader replica of the ZooKeeper
cluster, and handles special write requests of sequential no-
des that perform data processing. Clients do not need to
know the key used by enclaves for encryption towards the
ZooKeeper data store. This also allows the exclusion of
clients due to misbehaviour.

Based on this design, the remaining ZooKeeper code base
and any system software can be excluded from the TCB. Se-
cureKeeper therefore features a small TCB of 3795 Source
Lines of Code (SLOCs) apart from the trusted system sup-
port provided by the Intel SGX SDK [13]. Besides its small
TCB, SecureKeeper only changes three lines of the original
ZooKeeper code base, making it easily upgradeable to future
ZooKeeper versions. The memory demand of the enclaves
stays within small bounds, which avoids costly SGX-specific
paging with a high client load.

We compare SecureKeeper to ZooKeeper with and with-
out secure communication between replicas and clients on a
cluster of SGX-capable Intel Skylake machines. SecureKee-
per only adds an average performance overhead of 11.2%
to ZooKeeper when secure communication is enabled, while
enforcing stronger security guarantees.

In the next section, we describe the background and de-
sign considerations that led to the design of SecureKeeper.
After that, we introduce its design in Section 4, followed
by implementation details in Section 5. We present evalu-
ation results in Section 6 and discuss the obtained security

Replica3,LReplica2Replica1 Replica4 Replica5

Client2Client1 Client3 Client4 Client5 Client6 Client7 Client8

Agreement Agreement

Figure 1: General architecture of ZooKeeper.

guarantees and limitations in Section 7. Finally, we discuss
related work in Section 8 and draw conclusions in Section 9.

2. BACKGROUND
To motivate the design of SecureKeeper, we first give a

brief introduction to Apache ZooKeeper thereby discussing
its nature as a data-handling service, second we provide
essential details of SGX and finally outline an SGX-aware
threat model.

2.1 Data handling in Apache ZooKeeper
Apache ZooKeeper [12] is a coordination service, allowing

distributed applications the easy implementation of coordi-
nation primitives. Such primitives may be naming, configu-
ration management, leader election, group membership, bar-
riers and distributed locks. This exposes ZooKeeper to han-
dle potentially sensitive application data, especially when
used for distributed configuration management.

As shown in Figure 1, ZooKeeper is implemented as a
fault-tolerant service, typically featuring at least three repli-
cas. Clients connect to one of these and switch over to an-
other in case it crashes. ZooKeeper-managed data is orga-
nized hierarchically as a tree that is accessed via a simple file
system like Application Progamming Interface (API). This
data tree is composed of znodes, resembling a mixture of
folders and files: znodes can have payload data and other
child znodes at the same time.

ZooKeeper globally orders all write requests via the leader
replica (marked L in Figure 1) using the ZAB [14] agreement
protocol. Additionally, ZooKeeper guarantees FIFO order-
ing of all requests of one client, allowing replicas to answer
read requests from clients connected to them directly.

Most operations provided by ZooKeeper are dedicated to-
wards data handling: In order to retrieve and change the
payload of a znode, the GET and SET operations are used.
New znodes can be created using the CREATE operation, and
deleted via DELETE. Also it is possible to access a list of chil-
dren of a specific znode using the LS (getChildren) operation.

An exception to the data handling nature of ZooKeeper
builds a variant of the CREATE operation that instantiates a
sequential node. Here data-centric processing is required: If
a new sequential node is created, a sequence number is added
to the user-provided znode name. This sequence number is
monotonically increasing and managed by the parent znode,
thus the name of the new znode depends on the internal
state of the parent znode.

Since all operations are executed affecting one specific
znode in the data tree of ZooKeeper, request messages will
usually contain a path to that znode. The payload of a znode
will usually be contained in the GET response, and the SET
and CREATE requests. The LS operation is the only operation
that contains paths in the response message – the paths of
all child znodes. Application data managed by ZooKeeper
comprises the payload as well as the pathnames of znodes.
In many cases, the pure existence of a certain path steers
processing in a distributed application.

2



In summary, ZooKeeper primarily performs data handling
for clients with the exception of sequential nodes, were ac-
tual data processing takes place. Furthermore, payload and
path information are relevant to security considerations.

2.2 Intel SGX in a nutshell
SGX [4] is a processor instruction set extension that al-

lows the creation of so called enclaves. The enclave memory
range Enclave logical range (ELRANGE) is an isolated range
inside an application’s address space which is confidentiality
and integrity protected by the CPU package. Pages of the
ELRANGE are backed by the Enclave Page Cache (EPC):
a reserved range of system memory of at most 128 MB, used
to store all enclave pages.

Basic protection model. SGX prevents to jmp or di-
rectly call to the ELRANGE, instead the enclave must be
entered explicitly. Once inside the enclave, the CPU can
execute arbitrary code, except for a few instructions that
are prohibited inside enclaves. The enclave is allowed to
access data outside the ELRANGE, however, it cannot exe-
cute untrusted code. Even privileged code is prevented from
reading and altering enclave memory: illegal accesses result
in CPU exceptions and read access to enclave memory will
always return 0xFF.

Confidentiality of enclave memory is protected by trans-
parent memory encryption done by the CPU, i.e., plaintext
is only available inside the CPU package. Valid interaction
with an enclave is possible via Enclave calls (ecalls) to en-
ter an enclave and Outside calls (ocalls) to call out of the
enclave. An ecall comprises an explicit entering of the en-
clave and switching to a trusted stack located inside the
ELRANGE, as well as moving call parameters into the en-
clave and calling the according trusted function’s code. Re-
turning from an ecall and ocall, equally, requires switching
the stack back, moving return values or parameters out of
the ELRANGE and an explicit enclave exit.

Memory management. If enclave applications do not
fit into the 128 MB of EPC, a special form of EPC-paging
must be done. Enclave pages residing in the EPC can be
moved out to normal system RAM, similar to paging mem-
ory to disk. However, as enclave pages are encrypted by the
CPU, first a re-encryption happens to protect the contents
of the pages removed from EPC. Then, the page can be
migrated to normal RAM and afterwards, is qualified for
being paged to disk if required. The procedure of EPC pag-
ing involves a mechanism that prevents replaying paged-out
enclave pages by generating a so called “version array” that
is required to migrate the page back to EPC later and only
works once. EPC paging allows enclave applications to use
more than 128 MB of memory, however, implies a significant
performance impact as we discuss later.

System limitations. As enclaves can be only operated
in user space, SGX-based applications still depend on the
underlying operating system to cooperate. For example,
memory management of the EPC memory is done com-
pletely by the untrusted operating system. Hence, SGX nat-
urally cannot prevent denial of service attacks by privileged
code. The in-memory state of enclaves is protected against
replay attacks, as it is managed by SGX, even if paged out
to normal system memory. For persistent state and in the
context of application or OS restarts no specific protection
is provided.

Intel SDK provided system support. Beside SGX-
aware hardware, additional system software support for life-
cycle management of enclaves and memory management to
handle the EPC is required to operate SGX-enabled applica-
tions. Intel offers an Intel SGX SDK to handle these tasks,
and on top, provides an interface definition language called
Enclave Description Language (EDL) that allows the spec-
ification of the ecalls and ocalls an enclave should support.
The Intel SGX SDK also comprises a tool called “Edger8r”
which is a code generator supporting developers on the re-
curring task of writing stubs for ecalls and ocalls as well as
parameter passing between the enclave and the untrusted
code. Enclaves are finally compiled and linked together with
the generated code to a shared object, which is loadable by
the Intel SGX SDK as an enclave.

2.3 An SGX-aware Threat Model
We assume a typical threat model for SGX enclaves,

specifically in an untrusted cloud environment [6, 15]: an
attacker has full – even physical – control over the server
hardware and software environment. This includes that the
attacker can control the OS and all code invoked prior to
the transfer of control into the SGX enclave. The attacker’s
goal is to break confidentiality or integrity of code running
in the SGX enclave.

Availability threats, such as crashing an enclave, are not of
interest: by design, the hosting OS is able to stop execution
of enclaves at any time. Nevertheless, from a fault-tolerance
point of view, SecureKeeper – analogous to ZooKeeper, can
tolerate a limited number of node crashes.

We do not consider side-channel attacks [16] and assume
that enclaves do not possess any security relevant vulner-
abilities that may lead to leakage of data or breach its in-
tegrity. The latter can be addressed by applying software-
hardening techniques that are orthogonal to our approach.
We also fully trust the design and correct implementation
of the CPU package and the SGX instruction set extension
including all cryptographic operations done by SGX.

Finally, clients can read, modify and delete service-
provided data and therefore are considered to be trusted
in this regard.

3. DESIGN CONSIDERATIONS
The design of SecureKeeper is determined by (i) security

considerations but also (ii) performance and (iii) applicabil-
ity aspects play an important role.

Two basic design variants are compared: using an appli-
cation enclave, which hosts whole ZooKeeper instances, and
tailored enclaves, as featured by SecureKeeper, used to only
protect ZooKeeper-specific sensitive data and its processing.

Application enclaves are attractive for complex legacy ap-
plications because they can instantly profit from the SGX-
provided security guarantees without additional changes.
As a downside, such large enclaves pose a security trade-
off (Section 3.2) and may lead to substantial performance
degradation (Section 3.3).

3.1 Protecting ZooKeeper data
ZooKeeper as a coordination service is the backbone of

many distributed applications, storing essential and sensi-
tive data for their operation. As detailed in Section 2.1,
this data is split into path and payload tuples, stored in a
tree-like hierarchical database. At least the plaintext of the

3



 0

 100

 200

 300

 400

 500

 0  5  10  15  20

st
a
rt

 o
f 
w

o
rk

lo
a
d

st
a
rt

 o
f 
cl

u
st

e
r

M
e
m

o
ry

 U
s
a
g
e
 [
M

B
]

Run Time [s]

 Leader
 Follower 1
 Follower 2

Figure 2: Memory usage of ZooKeeper over time.

path and the associated payload information must always
be inaccessible to external entities to enforce confidential-
ity and additionally guarded to ensure integrity. Thus, this
data either needs to be put under the protection of an en-
clave or stored and processed in an encrypted form. The
former is straightforward when using application enclaves,
the latter is possible for most core functions with the excep-
tion of sequential nodes that require local processing (see
Section 2.1). As a consequence, SecureKeeper takes a mid-
dle ground and stores and processes data in encrypted form
where feasible and redirects plaintext processing to enclaves
(see Section 4).

3.2 Security considerations
Since ZooKeeper is implemented in Java, an application

enclave software stack would comprise the library OS, an en-
tire Java Virtual Machine (JVM) and the whole ZooKeeper
codebase. The library OS of Haven alone comprises millions
of code lines [6]. In addition, OpenJDK itself is composed
of roughly 4.5 million SLOCs, and was subject to several
remote exploitable vulnerabilities in the recent past [17–20].
Furthermore, ZooKeeper is a complex service with several
thousand lines of code (see Section 6.4). From a security
point of view, such a large TCB is at odds with basic secu-
rity considerations [7], and therefore a tailored enclave ap-
proach, as implemented by SecureKeeper, is more attractive
due to its smaller TCB.

In addition, the number of possible ecalls and ocalls com-
posing the enclave interface is of security relevance. Fewer
interface functions with a limited number of well defined pa-
rameters decrease the attack surface of the enclave. For a
hosted system with an application enclave, the application-
specific user interface calls and the ocalls that implement
system call functionality must be protected. The latter are
generic, thus hard to validate, and they have to be guarded
by additional checks [6]. In case of tailored enclaves, the
interface depends on the provided functionality. For Secure-
Keeper, we aim for a narrow and minimal interface, enabling
a targeted and context-specific parameter validation.

3.3 Resource and performance considerations
Another important aspect is the memory consumption of

the JVM and ZooKeeper. As mentioned in Section 2.2,
the EPC size is limited to 128 MB, and memory require-
ments beyond this amount require costly paging from se-
cure SGX memory to untrusted memory after reencryption
of the data. Figure 2 shows the memory usage of an un-
modified ZooKeeper instance. For this measurement, we
applied a realistic workload according to the original Zoo-
Keeper paper [12] to our test cluster which is described in
Section 6: asynchronous GET and SET requests with a 70:30

100

1,000

10,000

100,000

1,000,000

92 2561 8 64

L
3
 c

a
ch

e

E
P

CT
h
o
u
sa

n
d
 P

a
g
e
 A

c
c
e
ss

e
s 

/ 
s

Allocated Enclave Memory [MB]

random read
random write

Figure 3: Performance impact of enclave memory size on
random reads and writes on a Xeon E3-1230 v5 CPU.

0

50,000

100,000

150,000

200,000

1MB 4MB 16MB 102MB 512MB 3GB
0

5

10

15

20

25

30

R
e
q
u
e
st

s 
/ 
s

N
o
rm

e
d
 d

iff
e
re

n
c
e

Size of enclave memory range

native
SGX

normed diff.

Figure 4: Performance of a key-value store in an enclave
for a randomized request pattern.

ratio. The measurement proves that a standard ZooKeeper
instance easily exceeds the EPC memory limit, even in idle
state. After starting the above workload, the memory usage
of ZooKeeper increases significantly. Even though we only
add four standard-sized nodes to the initially empty Zoo-
Keeper instance and repeatedly call GET and SET using four
clients, the memory demand rises to more than 400 MB.

To form an intuition regarding the impact of EPC paging,
we measure the performance of random reads and writes
with variable enclave sizes. Figure 3 shows the perfor-
mance of accessing single bytes from random pages of a large
buffer allocated inside the enclave. By measuring the maxi-
mum possible page accesses per second, we find two turning
points, as visible in the figure: the first when reaching the
L3 cache limit at 8 MB; the second when exceeding the limit
of the EPC. As can be seen from the figure, users cannot
use the complete 128 MB of the EPC, which we assume is
due to the overhead of SGX management data structures.
Overall, the performance decreases 5.5× when exceeding the
L3 cache, and decreases another 200× when the EPC is ex-
hausted, i.e. the paged-EPC is more than 1000× slower than
the L3 cache.

We also implemented a key-value store (KVS) that we ex-
ecute inside an enclave to obtain a more realistic intuition
regarding the performance impact of EPC paging on a real
application. We increase the size of the enclave that runs
the KVS and limit the maximum number of key-value pairs
stored. We then measure the throughput of the KVS by ran-
domly accessing key-value pairs from a remote machine and

4



Atomic
Broadcast

Cnt. Encl.

Request
Processor Replicated

Database

Replica2,L

Entry Encl.4
Read

Txn Txn

Atomic
Broadcast

Cnt. Encl.

Request
Processor Replicated

Database
Entry Encl.2

Entry Encl.1

Entry Encl.3

Replica1

Read

Txn Txn

Atomic
Broadcast

Cnt. Encl.

Request
Processor Replicated

Database
Entry Encl.d

Entry Encl.5

Entry Encl.6

Replica3

Read

Txn Txn

Trusted C CodeTrusted Java Code Untrusted Java Code

Client1

Client2

Client3

Client4

Client5

Client6

Figure 5: Architecture of SecureKeeper.

find a similar behavior as previously in Figure 3. Essentially,
this leads to random memory access to the enclave memory
range, which is indicated on the x-axis of Figure 4. As soon
as the size of the enclave holding the KVS reaches the EPC
limit and the EPC paging starts, the performance drops sig-
nificantly. The measurements of this experiment are shown
in Figure 4, starting at 102 MB a huge performance impact
can be seen, which is also visualized as normalized difference
between native and SGX in the figure. We explain the dif-
ference to Figure 3 with pages that were initially allocated
(e.g., stack pages) but never used and after being paged out
once, never paged in again.

In summary, EPC paging starts with an enclave memory
size larger then 92 MB and reduces the performance of code
running inside an enclave significantly. Additionally, an un-
modified ZooKeeper instance uses 120 MB in idle state and
more than 400 MB of RAM for a realistic workload on a
small data set of znodes. These insights support our design
decision to implement SecureKeeper using tailored enclaves
and only move critical code sections into enclaves as well as
aiming at a low memory footprint when processing data.

3.4 Execution Environment Considerations
As our approach uses SGX enclaves, integrated via Java

Native Interface (JNI) into ZooKeeper, SGX support is re-
quired on all replicas. In addition, access to so called archi-
tectural enclaves from the Intel SGX SDK and the Intel SGX
driver is required in order to successfully launch and attest
enclaves. The use of hardware virtualization technology is
orthogonal to using SGX.

4. SECUREKEEPER
Next, we present the design of SecureKeeper that is driven

by the earlier outlined security considerations and the goal to
craft an efficient solution taking advantage of current SGX-
equipped CPUs.

4.1 Basic architecture of SecureKeeper
Figure 5 illustrates how our design integrates into the orig-

inal ZooKeeper architecture. For each client we have an in-
dividual enclave running on the replica as long as the client
is connected to which we call entry enclave. This enclave
maintains the client connection and the encryption of all
messages between the client and the enclave.

As we did not want huge changes at the client side, we de-
signed the client-to-replica communication as a simple con-
nection encryption alike Transport Layer Security (TLS).
TLS encrypted connections have recently been added to Zoo-
Keeper, thus, the client infrastructure for this already exists.
However, for SecureKeeper the endpoint of this secure con-
nection is located inside the entry enclave. The entry enclave
uses standard cryptographic functions to decrypt the mes-
sages from and to the client with a client-specific session key.
Only if this enclave has been remotely attested by the Se-
cureKeeper administrator, the secure key for all encryption
towards ZooKeeper is given to the enclave. This key is the
same for all enclaves and also the only state held by the en-
claves apart from the session key for the client connection.
Vice versa if a client can establish a secure connection based
on a previously out-of-band received public key, he can trust
the entry enclave.

Since the entry enclave exists once per client, there is no
need for the enclave to distinguish multiple clients, which
helps keeping the enclave’s code base low. However, it needs
to be able to “understand” the messages exchanged, i.e., be
able to serialize and deserialize them. This is required in
order to encrypt the sensitive fields of a message towards
ZooKeeper with a secret key shared by all enclaves.

Our approach also allows to exclude specific, previously
trusted, clients from the cluster in the future, as the clients
never see the encryption key used by the enclaves to protect
all data stored in the ZooKeeper data store.

In order to support the demands of the aforementioned
sequential nodes (see Section 2.1), we designed the counter
enclave. Even though this enclave is only used on the cur-
rent ZooKeeper leader replica, it exists once on each replica.
This is due to the fact, that on failure ZooKeeper may need
to elect a new cluster leader, and thus, a previous follower
replica may become new leader. Inside this enclave, the en-
crypted path and the plaintext sequence number determined
by ZooKeeper is merged together into one ciphertext. We
describe the implementation details of the counter enclave
in Section 4.4 and the consequences regarding our security
goals in the discussion section (see Section 7).

All other components of ZooKeeper are untrusted and will
always only see the encrypted path names of znodes and the
encrypted payload. However, we exploit that they can han-
dle the ciphertext as a blackbox, i.e. the same as plaintext.

4.2 General Message Processing
All messages from clients to the SecureKeeper cluster

must pass through the entry enclaves for processing and re-
encryption. By this, all sensitive information is encrypted
before being stored in the untrusted ZooKeeper database.

We distinguish two notions of encryption: Between clients
and the entry enclaves we apply transport encryption to the
whole messages (cf. TLS). After processing the message,
the entry enclaves encrypt sensitive parts towards the Zoo-
Keeper database; we call this storage encryption.

In general, for all requests from a client we first decrypt
the transport encryption hull. Then, we deserialize the
plaintext message and determine which fields contain sensi-
tive information. This usually affects the payload field of the
znode and its path name (see Section 4.3). However, not all
messages contain both: While SET requests always contain
a path and a payload and result in an empty response, the
GET requests contains only the znode path and the response

5



message will contain the respective payload. After all sensi-
tive fields have been encrypted, we serialize the message and
forward it to the untrusted ZooKeeper message processing
pipeline. Special treatment is required for creating sequen-
tial nodes, involving the counter enclaves (see Section 4.4).

Responses are basically implemented the same but in re-
verse order: First the message gets deserialized. Then, we
decrypt all fields that contain previously encrypted sensi-
tive data. Finally, we apply the transport encryption and
forward the buffer to the client via the ZooKeeper message
processing pipeline.

ZooKeeper response messages do not contain the opera-
tion type of the request they belong to. Hence, in order to
determine the operation of a request, we store the opera-
tion and request ID for each request. For this purpose we
maintain a FIFO queue inside the entry enclaves, because
the ordering of all requests of one client always guarantees
that the responses arrive in the same order as the requests.

4.3 Path and Payload Encryption
ZooKeeper allows storage of arbitrary data in the payload

field of each znode. Since ZooKeeper is never processing this
data, it is considered as a blackbox by ZooKeeper and we
can just encrypted it.

The encryption of path names of znodes must be done
transparently to ZooKeeper. Firstly, the encrypted path
must be a valid ZooKeeper path, i.e., it must not contain
illegal characters. Also, ZooKeeper must be able to operate
on the encrypted path names in all cases. Individual path
elements are encrypted separately, retaining the hierarchy
of znodes in order to support the getChildren operation.

In our design we split paths at each slash (/) and process
the chunks one after another We first encrypt each chunk
the same as for payload encryption. As an Initialization
Vector (IV) we compute a hash of the path starting from the
top level hierarchy until (and including) the current chunk.
This ensures that we never reuse the same IV 1 The IV and
the Keyed-Hash Message Authentication Code (HMAC) of
the current chunk are both concatenated with the encrypted
chunk, and form the encrypted version of this chunk.

We have to include the current chunk’s plaintext in the
computation of the hash that we use as IV, because other-
wise all child nodes of one parent would use the same IV.
However, the decryption of a path clearly requires knowl-
edge of the used IV which is not available from the request
message of LS requests, as we need to decrypt the paths of
the children of the requested znode. Hence, we have to ap-
pend the IV that we used to the encrypted chunk in order to
support the LS operation, even though for most operations
this would not be required.

We need to tie the encrypted payload of a znode to one
distinct znode path. This is due to the ZooKeeper database
residing in the untrusted execution environment. The at-
tacker could mix and switch payloads and znode names
arbitrarily otherwise. For example, an attacker could set
the admin password (if for example stored as payload of a
node /admin-credentials) to the password of his own non-
privileged user. The binding is done by appending the hash
of the znode path to the payload before payload encryp-
tion. By this, a specific payload is only valid for one specific
znode path, and the entry enclave can easily validate this

1assuming no SHA256 collisions.

constraint when processing the response from ZooKeeper
before forwarding it to the client.

4.4 Supporting Sequential Nodes
During creation of a znode with the sequential flag set

in the request message, ZooKeeper will append a monoton-
ically increasing number to the given znode name. After
the sequential node has been created, it is stored in the
ZooKeeper database the same as any other node, and is in-
distinguishable from regular znodes. If we applied the path
encryption as described above for sequential nodes, Secure-
Keeper would try to decrypt the whole pathname later on.
In the case of sequential nodes the path decryption would
fail, as it would contain the sequence number appended to
the given name. If we divided the pathname from the se-
quential number using an escape character we would change
the behaviour of ZooKeeper and violate assumptions of ex-
isting applications regarding ZooKeeper’s behaviour.

In order to solve this problem, we introduce the counter
enclave running once on the ZooKeeper leader replica. The
counter enclave decrypts the previously encrypted pathname
by the entry enclave, appends the given sequence number
and encrypts the whole altered path again. This only hap-
pens during the creation of sequential nodes, all other oper-
ations will just bypass the counter enclave.

A flag in the payload field marks whether or not a node
was created with the sequential flag, which is required for
the verification routine. If a node was created as a sequential
node, the verification must compare the hash of the znode
path without the sequence number to the hash stored in the
payload section. This in turn forms a problem to our binding
of paths and payload: If the inputs to the counter enclave
get replayed, it is possible to forge the sequence number
appended to a certain node. We discuss this, and the sub-
sequent integrity properties in the discussion in Section 7.

4.5 Deployment and Key Management
In our design, entry enclaves are not intended to commu-

nicate with each other. This reduces complexity, and thus,
the TCB of the enclaves according to our security goals. In
general, all entry enclaves are equivalent and use the same
secret key for cryptography towards ZooKeeper. This is re-
quired in order to allow one client’s entry enclave to decrypt
data created by a different client’s entry enclave.

The above design prevents the clients from requiring the
key used for encryption towards ZooKeeper, and allows in-
dividual session keys for each client connection. However,
it is important that entry enclaves verify valid clients and
block any communication if the client seems malicious.

This is a common problem of all SGX applications and
can be solved easily using bidirectional TLS certificate ver-
ification. In order for this to work, a special deployment
and bootstrapping procedure is required. The storage en-
cryption key will be provided to the entry enclave only after
successful remote attestation [21]. Once the key is received,
the correct entry enclave can seal the key and store it per-
sistently on the replica. Other entry enclaves on the same
replica can unseal this secret without another remote attes-
tation, as only valid entry enclaves will be able to get the
same sealing key. This remote attestation and sealing must
be done at least once for each replica.

The TLS private key and the public key of the clients, or
the Certificate Authority (CA) key that signed the clients

6



enclave {
trusted {
public size_t ec_request(
[in, out , size=buffer_size] char *buffer ,
size_t msg_len , size_t buffer_size , int id

);

public size_t ec_response(
[in, out , size=buffer_size] char *buffer ,
size_t msg_len , size_t buffer_size , int id

);
};

};

Listing 1: EDL interface of entry enclave.

keys must be provided to the entry enclaves in the same way.
Thus, the entry enclaves can verify correct clients and prove
their identity to the clients via TLS.

5. IMPLEMENTATION DETAILS
In our implementation description we describe i.) the in-

tegration of enclaves into the code base of ZooKeeper and
ii.) the cryptographic operations inside the enclaves.

5.1 Enclave Integration
SecureKeeper is implemented with minimal changes to

the Java code of ZooKeeper. Basically, we are intercepting
the message processing pipeline (for requests and responses)
of ZooKeeper and forward byte buffers of the messages to
the entry enclave. The enclave then applies processing to
these buffers and hands them back to the request processor
where the message will walk through the remaining stages as
usual. From ZooKeeper’s perspective, the whole message is
encrypted before entering the enclave, and is returned from
the enclave in decrypted form, such that ZooKeeper is able
to process the message without noticing the encrypted path
and payload field. The counter enclave is integrated into
the message processing pipeline in the same way but at a
position that is only executed on the leader replica.

To integrate both types of our enclaves with ZooKeeper, a
transition between Java and C-code is required. This is im-
plemented using JNI which allows the transition from Java
to a JNI interface written in C followed by an entry into the
enclave also written in C. In the ZooKeeper code base we
added a Java class that wraps all this, and offers an API
that can be conveniently used from the message processing
pipeline of ZooKeeper.

From the JNI code we call the enclave’s ecalls which are
defined by a EDL file that is used to generate the code
implementing the ecalls stub code. As shown in Listing 1
the interface of the entry enclave comprises two ecalls that
handle the request messages from a client and the response
messages from ZooKeeper respectively. Both ecall signa-
tures comprise a pointer to the buffer and the length of this
buffer, as well as the length of the message which is different
from the buffer length as we describe below. In addition to
the generated code, the Intel SGX SDK libraries for crypto-
graphic operations and a specialized stdlib for enclaves are
linked to the final enclave shared object file. The counter
enclave is only required for the creation of sequential nodes,
so its EDL interface is similar but comprises only one ecall.

Byte buffers containing the transport encrypted message
from the clients have to traverse the path through the JNI
interface and via the generated code as an ecall to the en-

clave. Unfavorably the message length usually increases in-
side the enclave due to appending the HMAC and the path’s
hash to the payload and the Base64 encoding. A decrease
of message length inside the enclave is not a problem, as the
used buffer is larger than required. However, if the length of
the message increases inside the enclave, the buffer can not
trivially be copied to the outside.

Even though the Intel SGX SDK supports copying buffers
in and out of enclaves, increasing a buffer inside an enclave
and copying the larger buffer out is currently not supported.
This is due to the fact that the enclave is not allowed to ex-
ecute code outside an enclave, and thus, can not allocate
an untrusted memory range outside. An allocation inside
the enclave does not help, as the memory range will not be
available outside of the enclave. One approach would be to
allocate a large buffer outside, and allow memory manage-
ment of this buffer only by the enclave.

In our case we can predict the amount of additional mem-
ory that will be required inside the enclave. Thus, we allo-
cate a slightly larger buffer before executing the ecall, and
by this, allow the enclave to append additional data to the
buffer. Using an additional length parameter, we indicate
the number of bytes actually used for the message in the
buffer. By this approach we achieve efficient resource usage,
and avoid the usage of a memory allocator for untrusted
memory in the enclave at the same time.

5.2 Enclave Cryptography
For cryptographic operations inside the enclaves we use

library support as provided by Intel SGX SDK. Amongst
others, it supports AES-GCM-128 encryption which is suit-
ing our purposes best, as it is considerably secure and of-
fers additional integrity protection of the ciphertext. As we
used the cipher for both, the transport and the storage en-
cryption, all ciphertext is integrity protected by the HMAC
which we always append in the end and verify during the
decryption. By appending the HMAC to the ciphertext, the
size of the payload field increases by a constant overhead.
This requires us to update the metadata of the according
znode, such that it reflects the correct size of the payload.

The concatenation of the encrypted chunk and the HMAC
may contain invalid characters if interpreted by ZooKeeper
as a Java String. Thus, we encode the whole chunk with
a Base64 encoding scheme variant for URL applications, to
also avoid the “/”-character in the encrypted path names.
Using this encoding causes an increase of the encrypted
pathnames of about 33%, which we discuss in Section 6.2.

6. EVALUATION
In this section we evaluate the performance of SecureKee-

per and compare it against a vanilla ZooKeeper cluster and
a version that provides TLS encryption between clients and
the replicas as a baseline. All experiments were performed
on a cluster of four identical machines2, where one machine
simulates clients while the three remaining machines host
ZooKeeper replicas.

6.1 Methodology
In general, the evaluation is along the lines of the origi-

nal ZooKeeper paper [12]. For each experiment we compare
SecureKeeper against a vanilla ZooKeeper and ZooKeeper

2Core i7-6700 @3.4GHz, 24 GB RAM, 256 GB SSD, 4x GbE

7



0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

0 100 200 300 400 500 600 700 800 900 1,000

R
e
q
u
e
st

s
/s

Client Threads

Vanilla-ZK
TLS-ZK

SecureKeeper

(a) Synchronous requests.

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

2 4 6 8 10 12 14 16

R
e
q
u
e
st

s
/s

Client Threads

Vanilla-ZK
TLS-ZK

SecureKeeper

(b) Asynchronous requests.

Figure 6: Throughput of 70:30 mixed GET and SET requests for various number of clients and 1024 Byte payload.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

R
e
q
u
e
st

s/
s

Payload [Byte]

Vanilla-ZK sync
TLS-ZK sync

SecureKeeper sync
Vanilla-ZK async

TLS-ZK async
SecureKeeper async

Figure 7: Throughput of sync. and async. GET requests.

with TLS enabled3. The three variants are denoted as Se-
cureKeeper, Vanilla-ZK and TLS-ZK in all graphs. The ex-
periments are performed using only asynchronous and again
using only synchronous requests. Also we experimented
with a wide range of typical payload sizes between 0 and
4096 Bytes. Our evaluator uses various numbers of client
threads connected to ZooKeeper replicas issuing requests as
fast as possible. We explicitly distribute the clients equally
on all replicas, in order to get most stable and reliable re-
sults. Only for the fault-tolerance experiment we must allow
clients to randomly choose a replica from a list of all replicas
(see Section 6.3).

We determine the optimal number of threads (i.e., number
of connections) for throughput measurements for a realistic
workload, according to the original ZooKeeper paper [12],
consisting of a 70:30 mix of GET and SET requests by grad-
ually increasing the number of clients: For asynchronous
requests the maximum performance is reached with 5 client
threads (see Figure 6b) and 200 pending requests (simul-
taneous unanswered requests in flight). In contrast, syn-
chronous requests perform best between 200 to 400 client
threads (see Figure 6a). As the maximum throughput for
synchronous requests is reached at a number of 300 client
threads, we consistently used this number for all other syn-
chronous experiments.

3https://issues.apache.org/jira/browse/
ZOOKEEPER-2125, accessed 5/10/2016.

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

R
e
q
u
e
st

s/
s

Payload [Byte]

Vanilla-ZK sync
TLS-ZK sync

SecureKeeper sync
Vanilla-ZK async

TLS-ZK async
SecureKeeper async

Figure 8: Throughput of sync. and async. SET requests.

6.2 Throughput of SecureKeeper
In Figure 7 we show the throughput of GET, and in Fig-

ure 8 the throughput of SET requests. These are answered
by the replica the client is connected to directly, in contrast
to SET requests, that are forwarded to the leader replica
and passed through the agreement protocol. Initially, for
both GET and SET we create one znode for each client thread
and then continuously read and write their payload with the
GET and SET respectively. As can be seen from the graphs,
the performance of SecureKeeper is close to the TLS-based
ZooKeeper variant with an average overhead for all mea-
sured payload sizes of 7.89% and 10.34% for synchronous
requests and 3.12% and 9.85% for asynchronous requests.
While the encryption overhead is more visible for low pay-
load sizes, with increasing payload size the throughput of
SecureKeeper and TLS-ZK converges. This behavior is due
to the constant encryption and enclave entering overhead
for each message which gets insignificant for higher payload
sizes. The details of the encryption overhead are illustrated
in Table 2 and detailed below.

Figures 9a and 9b show the performance for creating zno-
des in ZooKeeper. We distinguish the creation of regular
and sequential nodes here, as we have a second enclave en-
try on the leader replica for the latter (see Section 4.4). For
all three variants the throughput is a bit lower than the SET
throughput, as the internal ZooKeeper state size increases
with the growing number of znodes. The overhead of CREATE
requests compared to TLS-based ZooKeeper is 9.76% for
regular and 11.82% for sequential nodes with synchronous

8

https://issues.apache.org/jira/browse/ZOOKEEPER-2125
https://issues.apache.org/jira/browse/ZOOKEEPER-2125


10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

R
e
q
u
e
st

s
/s

Payload [Byte]

Vanilla-ZK
TLS-ZK

SecureKeeper (reg.)
SecureKeeper (seq.)

(a) Synchronous requests.

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

R
e
q
u
e
st

s
/s

Payload [Byte]

Vanilla-ZK
TLS-ZK

SecureKeeper (reg.)
SecureKeeper (seq.)

(b) Asynchronous requests.

Figure 9: Throughput of CREATE requests.

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

0 10 20 30 40 50 60 70 80 90 100

R
e
q
u
e
st

s/
s

Payload [Byte]

Vanilla-ZK sync
TLS-ZK sync

SecureKeeper sync
Vanilla-ZK async

TLS-ZK async
SecureKeeper async

Figure 10: Throughput of sync. and async. LS requests.

requests. Asynchronous requests show an overhead of 8.15%
for regular and 14.97% for sequential nodes.

We also evaluated the LS or getChildren operation, listing
all child nodes for a specific znode. Listing the children of a
znode leads to the decryption of all paths of all child nodes
of the znode in question. With our approach the high num-
ber of path decryption operations has a notable impact on
the throughput of the LS operation depending on the num-
ber of child nodes. The results are illustrated in Figure 10.
Synchronous LS requests have an overhead of 12.82% and
asynchronous requests 21.38%.

We also evaluated DELETE requests, however, as both the
request and response messages do not contain payload in
this case, we omit plotting a graph. Compared to TLS-
based ZooKeeper, the overhead of synchronous DELETEs is
15.16% and for asynchronous requests 9.08%.

Table 1 summarizes our evaluation for all operations and
for both synchronous and asynchronous requests. We pro-
vide the overhead of SecureKeeper and TLS-based Zoo-
Keeper compared to vanilla ZooKeeper in percent, as well as
the delta of these numbers. Finally, the table summarizes
the overall overhead of our approach as a global average
value of 11.20%.

The added confidentiality and integrity guarantees of our
approach clearly do not come at no cost when compared
with vanilla ZooKeeper. However, our evaluation shows
that the throughput of SecureKeeper is scaling and perform-
ing similar to TLS-enabled ZooKeeper. The payload and
path encryption cause the length of exchanged messages be-
tween clients and replicas to increase compared to vanilla

Operation TLS-ZK SecureKeeper ∆

sy
n
ch

ro
n
o
u
s

GET 55.71 % 63.60 % 7.89 %

SET 9.12 % 19.46 % 10.34 %

LS 43.17 % 55.98 % 12.82 %

CREATE 6.53 % 16.28 % 9.76 %

CREATESEQ 7.04 % 18.86 % 11.82 %

DELETE 14.48 % 29.64 % 15.16 %

Average 22.67 % 33.97 % 11.30 %

a
sy
n
ch

ro
n
o
u
s

GET 41.50 % 44.62 % 3.12 %

SET 8.45 % 18.30 % 9.85 %

LS 49.58 % 70.97 % 21.38 %

CREATE 3.70 % 11.86 % 8.15 %

CREATESEQ 3.50 % 18.47 % 14.97 %

DELETE 9.04 % 18.12 % 9.08 %

Average 19.30 % 30.39 % 11.09 %

Read average 47.49 % 58.79 % 11.30 %

Write average 7.73 % 18.87 % 11.14 %

Global average 20.98 % 32.18 % 11.20 %

Table 1: SecureKeeper overhead comparison.

Request Response

Transport −HMAC −IV +HMAC +IV

Path +relative Overhead −relative Overhead

Payload +HMAC +IV −HMAC −IV

Table 2: Comparison of encryption overhead.

ZooKeeper. This increase is essentially due to the HMACs
and IVs used for the decryption and encryption operations.
Also, messages are lengthened due to the Base64 encoding
of the path, as well as the added hash of the znode path to
the payload field. Finally, in our approach there is a con-
stant overhead due to the enclave entries and exists, which
is clearly not required for TLS-based ZooKeeper. Hence,
in general the throughput of our approach is below, though
close to, TLS-based ZooKeeper.

Table 2 provides an overview of the message length
changes due to our approach. As can be seen, the transport
encryption between clients and the entry enclave, causes a
constant decrease of the length of requests and a constant
increase for the responses. For path encryption the differ-
ence in length depends on the “depth” of the path (i.e., the
number of slashes in the path): for each chunk of the path,
we apply an individual encryption step, that adds an HMAC
and IV (see Section 4.3). Paths in requests (specifying which
node the operation is applied to) will be increased in length
for each request. For response messages the contained paths

9



0

10,000

20,000

30,000

40,000

50,000

60,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

R
e
q
u
e
st

s
/s

Payload [Byte]

Vanilla-ZK
SSL

SecureKeeper

Figure 11: Throughput of synchronous GET and SET oper-
ations, performed using the YSCB benchmark suite.

will get the same amount shorter (only in the case of the
getChildren operation). Finally, the overhead due to the
encryption of the payload is exactly the same as for the
transport encryption, as we use the same cipher.

In addition to measurements with our own workloads,
we also performed throughput experiments using the YCSB
benchmark suite. We compiled a mixed workload of syn-
chronous read and write requests, and used 35 threads to
connect to our ZooKeeper cluster. Then, for various differ-
ent payload sizes, we performed 500k operations each. As
can be seen from the results in Figure 11, all three variants
scale similarly well and SecureKeeper’s performance is very
close to the TLS variant. The lower baseline of the YCSB
benchmark compared to our own, is due to YCSB not able
to perform a warmup phase as we do with our evaluator
for all experiments. In addition, with YCSB we have much
higher client-side CPU load during the measurement, which
requires us to decrease the number of simultaneous clients.

6.3 Fault Tolerance
As ZooKeeper can tolerate replica faults, we evaluated

the capability of our system to maintain the fault-tolerance
properties of original ZooKeeper. In order to achieve this,
we simulated faults of replicas while a constant client load
is applied. In all cases we measured the total throughput of
all clients on the cluster executing asynchronous GET and SET
requests with a fixed payload size of 1024 Bytes every 250 ms
and visualize it grouped by timeslots of 1 s. We executed
separate experiments for a failure of the leader replica and
a failure of one of the follower replicas. After starting a
clean cluster, we let the system warmup for a few seconds
and inject the fault after 30 s from the cluster start. Then,
we keep the cluster running without restarting the replica
for another 30 s. We explicitly distribute the clients equally
on all replicas in the previous experiments for improving
stability of the results. In contrast, for fault tolerance we
provide each client with a list of all replicas and let the
client choose one replica randomly. Otherwise, automatic
failover of clients to another replica is not possible.

As can be seen from Figure 12, most importantly, in all
cases SecureKeeper shows the same fault-tolerance as vanilla
ZooKeeper. Also, in all cases, the missing replica reduces the
total throughput by approximately one third. However, on
a leader failure, a leader election is executed by ZooKeeper,
which causes the total throughput to drop to zero for a cer-
tain amount of time until a new leader has been elected.

0

20,000

40,000

60,000

80,000

100,000

120,000

0 5 10 15 20 25 30

R
e
q
u
e
st

s
/s

Time [s]

Vanilla-ZK
TLS-ZK

SecureKeeper

(a) Leader failure.

0

20,000

40,000

60,000

80,000

100,000

120,000

0 5 10 15 20 25 30

R
e
q
u
e
st

s
/s

Time [s]

Vanilla-ZK
TLS-ZK

SecureKeeper

(b) Follower failure.

Figure 12: Fault-tolerance behavior of ZooKeeper variants.

Component Language SLOC

tr
u
st
ed

(De-)Serialization C 2514

Counter and entry enclave C 985

SDK-generated code C 572

Total trusted 4071
u
n
tr
u
st
ed

ZooKeeper Server Java 33851

Enclave interfaces Java 154

Enclave management C 296

SDK-generated code C 262

Total untrusted 34563

Total SecureKeeper 4783

Total 38634

Table 3: Size of code base of SecureKeeper components.

After the leader election has finished, throughput remains
at about two thirds as expected, as still the cluster runs
without a third replica.

6.4 Size of Code Base
Table 3 compares the size of the original ZooKeeper code

base to SecureKeeper. The overall TCB of SecureKeeper
comprises about 4,000 SLOCs. More than 62% of this code
is used for (de)serialization of messages and taken from
the original ZooKeeper C bindings. The remainder of the
trusted code base implements parameter passing and glue
code for the message flow through the enclaves. The total
amount of trusted code of SecureKeeper is roughly 12% of
the complete ZooKeeper code base, while we added less than
100 SLOCs to the ZooKeeper client code base. We could not
measure the size of the code base of the Intel SGX SDK-
provided libraries, such as the libstd and the cryptographic
library, but we mention their binary size in Section 6.5.

The untrusted code of SecureKeeper comprises creation,
initialization and maintenance of the enclaves, parameter
passing across the enclave boundary and the JNI interface.
Only three lines of the original ZooKeeper code base have
been changed, all others have been added, thus, we call our
approach minimally-invasive to ZooKeeper.

6.5 Memory Consumption
The total memory footprint of an enclave composed EPC

memory and SGX-internal metadata depends on the enclave

10



code, one stack region for each thread and the heap. Each
enclave thread maintains its own stack (default 64 KB), and
SGX data structures holding thread metadata and state.
The enclave code is basically the compiled and signed shared
object which is copied to the ELRANGE during the enclave
creation using the Intel SGX SDK API. Finally, configura-
tion of the heap size can be done with an enclave configu-
ration file that is used by the SGX signer tool of the Intel
SGX SDK.

The largest and most significant component of enclave
memory consumption is the heap and code of the enclave.
Due to the cryptographic operations, the heap must be able
to hold the largest possible message twice as source and des-
tination of the encryption or decryption is the same size. In
addition the list of request types requires space for all pend-
ing requests, which can be up to 200 requests in our ex-
periments, but should be negligible as the size of one entry
is only a few bytes. In total, based on the above outlined
constraints and our enclave shared object size of 436 KB,
the required memory for each of our entry enclaves is about
580 KB. This allows more than 150 enclaves to fit into the
EPC of each ZooKeeper replica without EPC paging.

The counter enclaves memory layout is essentially the
same, except for the heap size, which can be a lot smaller
because we only process the path of znodes. Hence, the
counter enclave with a binary size of 325 KB requires an
additional amount of 397 KB memory on the leader replica.

As a result, we can keep the enclave memory consump-
tion below the EPC threshold of 92 MB for each replica,
even for high client loads. If necessary, the memory footprint
could be further decreased by co-locating multiple or even all
clients to one enclave. However, this would increase the code
complexity of the entry enclave, i.e. for client session man-
agement and add additional synchronization points, which
could harm performance. Lastly, enclaves as of this version
of SGX cannot dynamically increase their ELRANGE al-
located memory size, thus a conservative allocation for the
maximum number of clients has to be performed upfront at
service startup time.

7. DISCUSSION
In this section, we discuss the security guarantees that Se-

cureKeeper provides and other guarantees that are beyond a
minimally-invasive integration with SGX. Furthermore, we
explore the general applicability of the proposed methodol-
ogy to other services.

7.1 Confidentiality and Integrity Guarantees
Our approach ensures the confidentiality of all user-

provided data stored in the ZooKeeper database. This com-
prises the plaintext payload and path names of all znodes.
However, operation types, the znode tree structure, as well
as node access frequencies and access times are still visible.
In this regard, SecureKeeper provides similar protection as
filesystem-level encryption [22].

As mentioned, SecureKeeper ensures the integrity of plain
znodes and their associated path names. This is achieved
by secure authenticated communication between clients and
entry enclaves, and also data encryption once znodes are
passed to Zookeeper for further processing. This is imple-
mented by an HMAC over the encrypted payload of a znode,
which is verified during decryption. Any modification to the

payload—be it purposeful or accidental—can be detected
during the verification before the data is passed to the client.

Another aspect of integrity is the link between the znode
path and the payload. As we encrypt a hash of the path
name with its associated payload, the path is bound to the
payload. This enables the entry enclave to detect whether
a payload belongs to a certain path name or not, before the
data is forwarded to the client. Thus, an attacker cannot
exchange the payload of a node for that of another node.

This approach, however, does not suffice for sequential
nodes. Here the counter enclave receives untrusted input
from the ZooKeeper base code in the form of an incremented
counter value stored in the metadata of the associated par-
ent node. The passed value can be validated to be a num-
ber, but it may be arbitrarily chosen by the outside code.
A malicious attacker can choose the tail part of sequential
node path names that stands for the sequential node number
according to the format convention. In this limited scope,
SecureKeeper is susceptible against naming attacks, i.e. no
new znode payload information can be crafted nor existing
payload information can be modified but only overwritten
by payloads with the same sequential node path name prefix.

We considered protective measures but all of them lead to
a system design that has to be resilient to rollback attacks of
externalized state or even resilient to Byzantine faults [23].
Both aspects, as outlined next, would require substantial
architectural changes and, since the primary goal of Secu-
reKeeper is the protection of confidentiality, we do not con-
sider this issue as severe and leave this as a direction for
future work that may result in an entirely different service
architecture.

7.2 Replay and Denial of Service Attacks
There are two kinds of replay attacks that can be dis-

tinguished: first, the communication between a client and
the entry enclave may be replayed, but this can easily be
prevented using replay-safe encrypted communication (i.e.
TLS); second, the inputs provided to the enclaves from the
untrusted ZooKeeper data store may be stale and/or re-
played, which leads to the clients reading stale values. SGX
itself offers no means to prevent replay attacks regarding
state that is external to enclaves, be it volatile or persis-
tent [6, 24]. One option would be the use of a Byzantine
fault-tolerant agreement protocol [23], but this requires sig-
nificant changes to the ZooKeeper architecture, which is in-
compatible with the design goals of SecureKeeper.

7.3 Wider Applicability of the Approach
The general idea of SecureKeeper is the minimally-

invasive integration of SGX to achieve confidentiality and
integrity under the above outlined restrictions. Despite the
complexity of ZooKeeper as a replicated and fault-tolerant
coordination service, this is possible due to the fact that
ZooKeeper performs only limited data processing. Thus,
it can be assumed that other services that mostly handle
data but do not process it can be protected similarly. Sim-
ple KVS and blob storage may be a good fit because they
access data by a unique identifier. If a query API beyond
an exact match needs to be supported, e.g. range queries,
further enclave support may be needed. This could be ad-
dressed, however, by storing keys or a subset of keys inside
an enclave, which only would require hosting a fraction of

11



the service state in the enclave and thus limit performance
degradation (see Section 3).

8. RELATED WORK
There have been a number of approaches targeting the

protection of applications from unauthorized access. Many
of these solutions so far rely on additional system software
layers in the absence of appropriate commodity hardware
support. Examples are NGSCB [25, 26] and Proxos [27],
which feature the idea of an untrusted and a trusted operat-
ing system, running on the same machine isolated by a vir-
tual machine monitor. As a consecutive step several systems
proposed a trusted virtualization layer guarding the appli-
cations from unauthorized operating system access [28, 29].
All of these approaches come attached with a much larger
TCB and if performant typically feature a more coarse-
grained partitioning than what SecureKeeper requires.

There has been a large number of systems that uti-
lized trusted hardware to partition software in trusted
and untrusted parts. Previous examples are secure co-
processors [30] and Trusted Platform Modules (TPMs) [31],
both offering protection from certain types of physical ac-
cess. While on the one hand, secure co-processors offer quite
limited performance due to thermal problems and are rather
expensive, they are primarily used in niche markets. Nev-
ertheless, with TrustedDB [32] there exists an approach for
splitting a database between an untrusted commodity sys-
tem and a secure co-processor.

On the other hand, TPMs are too restricted in their ca-
pabilities, e.g. remote attestation, to be useful in complex
shared environments. Basing on the functionality of the
TPM a number of systems aimed to achieve trusted exe-
cution with a small additional TCB [33, 34]. However, they
either suffer from the bad performance of the TPM chip [33]
or require a larger TCB (i.e., a virtualization layer) and pro-
tect systems at a more coarse-grained level.

ARM TrustZone [35] distinguishes only two levels of trust:
a secure world and a non-secure world. In essence one has
to trust the complete code of the secure world which might
include substantial system code. To achieve a more fine-
grained trust scheme, Santos et al. [36] proposed so called
trustlets hosted by a managed runtime inside the secure
world. In principle SecureKeeper could be deployed on-top
of this framework, but TustZone offers no memory encryp-
tion and so far it is mainly supported by embedded systems.

As previously described, SGX features fine-grained de-
ployment of trusted execution environments (TEEs), so a
single application can even host multiple enclaves. So far
this has been marginally exploited due to the lack of freely
available system software and hardware. Baumann et al. [6]
proposed Haven, a system that enables execution of unmodi-
fied legacy applications inside an enclave. This was achieved
by porting a library OS to the enclave and the shielding of
system calls that need to be processed by the untrusted host
operating system. The consequence of this convenient way
to execute legacy applications on top of SGX is, as outlined
in detail in Section 3, a considerable performance overhead,
and, more importantly, a rather large TCB. VC3 [15] took
a different direction by focusing on the secure execution of
MapReduce applications. Only the actual data processing
tasks are executed inside enclaves while the framework is
kept unchanged in the untrusted environment. To protect
the execution inside the enclave, compiler-based hardening

techniques have been applied. Finally, the distribution of
data is integrity-protected, in order to ensure a malicious
host cannot exclude data from a computation without be-
ing detected. While SecureKeeper shares the fine-grained
partitioning using SGX with VC3, it targets the protection
of confidentiality of ZooKeeper as a networked-service. So
far neither Haven nor VC3 has been evaluated on top of
production hardware, which SecureKeeper has.

Strackx et al. [37] proposed to use of SGX to implement
the idea of an inverted cloud. Instead of maintaining huge
clusters with machines on low load, mini providers are used.
The cloud provider takes CPU power from those mini pro-
viders and executes work on them. This leads to the effect,
that computing resources can be used more efficiently. How-
ever, their work focuses more on conceptual level and does
neither address ZooKeeper nor data-handling services.

While the previously mentioned related work focused on
generic approaches towards securing applications from unau-
thorized access, there are systems that specifically target
to secure the processing of sensitive data, e.g. in scope of
databases or a file system.

One option is to move query processing to the client
side [38, 39] or an intermediate proxy [40]. While this can ef-
fectively preserve data confidentiality, it demands data stor-
age and query processing at the client side [38, 39]. In a
preliminary workshop paper, we proposed the ZPP [40], a
trusted proxy intercepting requests between clients and Zoo-
Keeper replicas. Compared to this work, SecureKeeper fol-
lows a different direction by integrating secure data process-
ing into ZooKeeper itself. The result is a much leaner TCB
as we do not rely on a trusted network stack and need no
trusted operating system underneath. It offers better perfor-
mance as an additional hop that was demanded by putting a
physical machine in between the clients and the ZooKeeper
instance can be avoided.

Popa et al. [41] proposed the execution of queries over en-
crypted data. However, the proposed query support is lim-
ited and the approach incurs a large performance penalty.

9. CONCLUSION
Trust issues still impede the use of cloud infrastructures

when sensitive data needs to be process. In this paper we
showed how ZooKeeper, a central component of complex
distributed workloads, can be efficiently secured using SGX.
The resulting SecureKeeper demonstrates how tailored en-
claves can be integrated minimal-invasively to ensure confi-
dentiality of all managed user data and integrity for plain
znodes. Due to its lightweight integration of enclaves the
induced performance overhead is comparable to using Zoo-
Keeper with TLS encryption enabled.

Acknowledgments
This project received funding from the European Union’s
Horizon 2020 research and innovation programme under the
SERECA (Grant agreement No. 645011) and the Secure-
Cloud (Grant agreement No. 690111) project.

References
[1] IDC, Worldwide Cloud IT Infrastructure Market

Growth Expected to Accelerate [...] http://www.idc.
com/getdoc.jsp?containerId=prUS25576415, 2015.

12

http://www.idc.com/getdoc.jsp?containerId=prUS25576415
http://www.idc.com/getdoc.jsp?containerId=prUS25576415


[2] K. R. Jayaram, D. Safford, U. Sharma, V. Naik, D.
Pendarakis, and S. Tao, Trustworthy Geographically
Fenced Hybrid Clouds, Middleware, 2014.

[3] S. Pearson and A. Benameur, Privacy, Security and
Trust Issues Arising from Cloud Computing, Cloud-
Com, 2010.

[4] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R. Sava-
gaonkar, Innovative Instructions and Software Model
for Isolated Execution, HASP, 2013.

[5] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo, Using Innovative Instructions to Create
Trustworthy Software Solutions, HASP, 2013.

[6] A. Baumann, M. Peinado, and G. Hunt, Shielding Ap-
plications from an Untrusted Cloud with Haven, OSDI,
2014.

[7] Synopsys, Inc., Open Source Report 2014, http : / /
go . coverity. com / rs / 157 - LQW - 289 / images / 2014 -
Coverity-Scan-Report.pdf, 2014.

[8] Spotify AB, Sparkey, https : //github . com/spotify/
sparkey-java.

[9] Apache HTTP Server Project, Apache HTTP Server,
https://httpd.apache.org/, 2016.

[10] Eclipse Foundation, Jetty, http://www.eclipse.org/
jetty/, 2015.

[11] W. Reese, Nginx: the High-Performance Web Server
and Reverse Proxy, Linux Journal, vol. 2008, no. 173,
2008.

[12] P. Hunt, M. Konar, F. Junqueira, and B. Reed,
ZooKeeper: Wait-Free Coordination for Internet-Scale
Systems, USENIXATC, 2010.

[13] Intel Software Guard Extensions (Intel SGX) SDK,
https://software.intel.com/sgx-sdk.

[14] F. P. Junqueira, B. C. Reed, and M. Serafini, Zab:
High-performance broadcast for primary-backup sys-
tems, DSN, 2011.

[15] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M.
Peinado, G. Mainar-Ruiz, and M. Russinovich, VC3:
Trustworthy Data Analytics in the Cloud Using SGX,
SOSP, 2015.

[16] Y. Xu, W. Cui, and M. Peinado, Controlled-channel
attacks: Deterministic side channels for untrusted op-
erating systems, IEEE, 2015.

[17] CVE-ID: CVE-2016-0494. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-0494, 2016.

[18] CVE-ID: CVE-2016-0687. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-0687, 2016.

[19] CVE-ID: CVE-2016-3427. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-3427, 2016.

[20] CVE-ID: CVE-2016-3443. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-3443, 2016.

[21] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, In-
novative Technology for CPU Based Attestation and
Sealing, HASP, 2013.

[22] M. Halcrow, eCryptfs: An enterprise-class encrypted
filesystem for linux, Proceedings of the 2005 Linux
Symposium, 2005.

[23] M. Castro, B. Liskov, et al., Practical Byzantine fault
tolerance, vol. 99, 1999.

[24] J. Beekman, J. Manferdelli, and D. Wagner, Attesta-
tion transparency: Building secure internet services for
legacy clients, 2016.

[25] A. Carroll, M. Juarez, J. Polk, and T. Leininger, Mi-
crosoft Palladium: A Business Overview, Microsoft
Content Security Business Unit, 2002.

[26] M. Peinado, Y. Chen, P. England, and J. Manferdelli,
NGSCB: A Trusted Open System, Information Secu-
rity and Privacy, 2004.

[27] R. Ta-Min, L. Litty, and D. Lie, Splitting Interfaces:
Making Trust Between Applications and Operating
Systems Configurable, OSDI, 2006.

[28] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.
Ports, Overshadow: A Virtualization-based Approach
to Retrofitting Protection in Commodity Operating
Systems, ASPLOS, 2008.

[29] J. Criswell, N. Dautenhahn, and V. Adve, Virtual
Ghost: Protecting Applications from Hostile Operating
Systems, ASPLOS, 2014.

[30] Lindemann, M. and Perez, R. and Sailer, R. and van
Doorn, L. and Smith, S.W., Building the IBM 4758
secure coprocessor, Computer, 2001.

[31] Trusted Computing Group, Trusted Platform Module
Main Specification. version 1.2.

[32] S. Bajaj and R. Sion, TrustedDB: A Trusted Hardware
Based Database with Privacy and Data Confidential-
ity, SIGMOD, 2011.

[33] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki, Flicker: An Execution Infrastructure
for TCB Minimization, EuroSys, 2008.

[34] F. Zhang, J. Chen, H. Chen, and B. Zang, CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-
tenant Cloud with Nested Virtualization, SOSP, 2011.

[35] ARM Limited, ARM Security Technology - Building a
Secure System using TrustZone Technology, 2009.

[36] N. Santos, H. Raj, S. Saroiu, and A. Wolman, Using
ARM Trustzone to Build a Trusted Language Runtime
for Mobile Applications, ASPLOS, 2014.

[37] R. Strackx, P. Philippaerts, and F. Vogels, Idea: To-
wards an Inverted Cloud, Engineering Secure Software
and Systems, 2015.

[38] P. Williams, R. Sion, and D. Shasha, The Blind Stone
Tablet: Outsourcing Durability to Untrusted Parties,
NDSS, 2009.

[39] R. A. Popa, E. Stark, S. Valdez, J. Helfer, N. Zel-
dovich, and H. Balakrishnan, Building Web Applica-
tions on Top of Encrypted Data Using Mylar, NSDI,
2014.

[40] S. Brenner, C. Wulf, and R. Kapitza, Running Zoo-
Keeper Coordination Services in Untrusted Clouds,
HotDep, 2014.

[41] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan, CryptDB: Protecting Confidentiality
with Encrypted Query Processing, SOSP, 2011.

13

http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
https://github.com/spotify/sparkey-java
https://github.com/spotify/sparkey-java
https://httpd.apache.org/
http://www.eclipse.org/jetty/
http://www.eclipse.org/jetty/
https://software.intel.com/sgx-sdk
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0494
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0494
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0687
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0687
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3427
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3427
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3443
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3443

	Introduction
	Background
	Data handling in Apache ZooKeeper
	Intel SGX in a nutshell
	An SGX-aware Threat Model

	Design considerations of SecureKeeper
	Protecting ZooKeeper data
	Security considerations
	Resource and performance considerations
	Execution Environment Considerations

	SecureKeeper
	Basic architecture of SecureKeeper
	General Message Processing
	Path and Payload Encryption
	Supporting Sequential Nodes
	Deployment and Key Management

	Implementation Details
	Enclave Integration
	Enclave Cryptography

	Evaluation
	Methodology
	Throughput of SecureKeeper
	Fault Tolerance
	Size of Code Base
	Memory Consumption

	Discussion
	Confidentiality and Integrity Guarantees
	Replay and Denial of Service Attacks
	Wider Applicability of the Approach

	Related Work
	Conclusion

