
Telling Your Secrets Without Page Faults:
Stealthy Page Table-Based Attacks on Enclaved Execution

Jo Van Bulck
imec-DistriNet, KU Leuven
jo.vanbulck@cs.kuleuven.be

Nico Weichbrodt
IBR DS, TU Braunschweig

weichbr@ibr.cs.tu-bs.de

Rüdiger Kapitza
IBR DS, TU Braunschweig

kapitza@ibr.cs.tu-bs.de

Frank Piessens
imec-DistriNet, KU Leuven

frank.piessens@cs.kuleuven.be

Raoul Strackx
imec-DistriNet, KU Leuven

raoul.strackx@cs.kuleuven.be

Abstract

Protected module architectures, such as Intel SGX, en-
able strong trusted computing guarantees for hardware-
enforced enclaves on top a potentially malicious operat-
ing system. However, such enclaved execution environ-
ments are known to be vulnerable to a powerful class of
controlled-channel attacks. Recent research convincingly
demonstrated that adversarial system software can extract
sensitive data from enclaved applications by carefully
revoking access rights on enclave pages, and recording
the associated page faults. As a response, a number of
state-of-the-art defense techniques has been proposed that
suppress page faults during enclave execution.

This paper shows, however, that page table-based
threats go beyond page faults. We demonstrate that an
untrusted operating system can observe enclave page ac-
cesses without resorting to page faults, by exploiting other
side-effects of the address translation process. We con-
tribute two novel attack vectors that infer enclaved mem-
ory accesses from page table attributes, as well as from
the caching behavior of unprotected page table memory.
We demonstrate the effectiveness of our attacks by recov-
ering EdDSA session keys with little to no noise from the
popular Libgcrypt cryptographic software suite.

1 Introduction

Enclaved execution, or support for protected modules, is
a promising new security paradigm that makes it possible
to execute application code on a platform without having
to trust the underlying operating system or hypervisor.
With the advent of Intel SGX [32], support for Protected
Module Architectures (PMAs) is now available on main-
stream consumer hardware, and can be used to defend
against malicious or compromised system software, both
in an untrustworthy cloud environment [3, 36] as well as
for desktop applications [18]. In particular, one line of
research has developed techniques and supporting soft-

ware to make it relatively easy to run unmodified legacy
applications within an enclave [3, 2, 41, 45].

An essential aspect of enclaved execution is that the
hardware prevents privileged system software from read-
ing or writing a module’s private memory directly, or
from tampering with its internal control flow. However,
the OS remains in charge of allocating platform resources
(memory pages and CPU time) to protected modules, such
that the platform can be protected against misbehaving
or buggy enclaves. One consequence of this interaction
between privileged system software and enclaves is an en-
tirely new class of powerful, indirect attacks on enclaved
applications. Xu et al. [48] first showed how a malicious
OS can use page faults as a noise-free controlled-channel
to extract rich information (full text and images) from
a single run of a victim enclave. This is particularly
dangerous when legacy software is running within an
enclave, as these applications have not been hardened
against side-channel attacks. As a result, several authors
have expressed their concerns on side-channel vulnera-
bilities in a PMA setting in general, and the page fault
channel in particular [12, 9, 43, 39, 7].

The research community has since proposed a num-
ber of compile-time and hardware-enabled defense tech-
niques [40, 10, 39] that hide enclave page accesses from
the OS. We argue, however, that page faults are but one
side-effect of the address translation process that is ob-
servable by untrusted system software. More specifically,
the main contribution of this paper is that we show that an
adversarial OS can infer page accesses from an enclaved
execution that never suffers a page fault. Our attacks ex-
ploit the key property that the SGX design leaves page
table memory under explicit control of the untrusted OS.
As such, other side-effects of the page table walk in en-
clave mode can be observed by the OS with very little to
no noise. We identify and successfully exploit straightfor-
ward effects such as the setting of “accessed” and “dirty”
bits, as well as less obvious effects such as the caching of
page table memory itself. An important consequence is



that our novel attack vectors bypass recent defenses that
focus exclusively on suppressing page faults [40, 39].

In summary, the contributions of this paper are:

• We advance the state-of-the-art by defeating recently
proposed defense techniques, showing that we can
infer page accesses without resorting to page faults.

• We present a page table-based technique to precisely
interrupt an enclave at instruction-level granularity.

• We implement our novel attack vectors as an exten-
sion to Graphene-SGX’s untrusted runtime, facilitat-
ing eavesdropping on unmodified applications.

• We demonstrate the effectiveness of our attacks by
extracting private EdDSA session keys from the
widely used Libgcrypt cryptographic library.

Our attack framework and evaluation scenarios are
available as free software, licensed under GPLv3, at
https://github.com/jovanbulck/sgx-pte.

2 Background

In this section, we provide the necessary background on
Intel SGX, refine the attacker model, and discuss previous
research results on controlled-channel attacks.

2.1 Intel SGX
Recent Intel x86 processors from Skylake onwards are be-
ing shipped with Software Guard eXtensions (SGX) [32,
1, 23] that enable strong, hardware-enforced trusted com-
puting guarantees in an untrusted execution environment.
SGX extends the instruction set and memory access logic
of the Intel architecture to allow the execution of security-
sensitive application logic in protected enclaves in isola-
tion from the remainder of the system, including privi-
leged OS or hypervisor.

Memory Protection. An SGX-enabled processor sets
aside a contiguous physical memory area, referred to as
Processor Reserved Memory (PRM). A hardware-level
memory encryption engine guarantees the confidentiality,
integrity, and freshness of PRM memory while it resides
outside of the processor package. The PRM region is
subdivided into two data structures: the Enclave Page
Cache (EPC) and the Enclave Page Cache Map (EPCM).
Protected 4 KB enclave code and data pages are allocated
from the EPC, while every EPC page has a shadow entry
in the EPCM to track ownership, type, address translation,
and permission meta data. EPCM memory is exclusively
managed by the processor, and is never directly accessible
to software.

Page
walk?

Enclave
mode?

padrs in
PRM? Allow

Page fault vadrs in
enclave?

Abort page

padrs in
EPC?

EPCM
checks?

ok no

yes

no

yesfail

no

yes

fail
yes ok

Figure 1: Additional memory access checks performed by
SGX for a virtual address vadrs that maps to a physical
address padrs.

SGX enclaves are instantiated as part of the virtual ad-
dress space of a conventional OS process. Since PRM is
a limited system resource, untrusted system software is in
charge of assigning protected memory pages to enclaves,
and is allowed to oversubscribe the EPC. At enclave cre-
ation time, the OS can instruct the processor to initialize
newly allocated EPC pages with unprotected code or data.
After finalizing the enclave, and before it can be entered,
the hardware calculates a secure hash of the enclave’s
initial state. This allows the integrity of the untrusted
loading process to be attested to a remote stakeholder [1].
SGX furthermore offers dedicated ring-zero instructions
to securely evict and reload enclave pages between EPC
memory and untrusted storage.

An important design decision of SGX is that it leaves
page tables under explicit control of the untrusted oper-
ating system. Instead, SGX implements an additional,
independent layer of access control on top of the legacy
page table-based memory protection mechanism. Fig-
ure 1 summarizes the additional checks performed when
accessing enclave memory. First, in order to translate
the provided virtual address to a physical one, the pro-
cessor traverses the OS-managed page tables, as well as
the extended page tables set up by the hypervisor, if any.
As usual, a page fault is signaled to the untrusted OS in
case of a permission mismatch or missing page table en-
try during address translation. Any attempt to access the
PRM region in non-enclave mode results in abort page
semantics, i.e., read 0xFF and ignore writes. Likewise, in
enclave mode, the processor is allowed to reference all
memory that falls outside of the executing enclave’s vir-
tual address range, but abort page semantics apply when
such an address resolves into PRM memory. Further-
more, a page fault is signaled to the untrusted OS for EPC
accesses that either do not belong to the currently execut-
ing enclave, are accessed through an unexpected virtual

https://github.com/jovanbulck/sgx-pte


address, or do not comply with the read/write/execute
permissions imposed by the EPCM.

To speed up subsequent memory accesses, SGX em-
ploys the processor’s Translation Lookaside Buffer (TLB)
as a trusted cache of already checked page permissions.
That is, SGX’s memory access protection is entirely im-
plemented in the Memory Management Unit (MMU)
hardware that consults the untrusted page tables and the
EPCM whenever a provided virtual address was not found
in the TLB [32, 9]. SGX’s security argument is based on
the key observation that untrusted system software needs
to interrupt the logical processor core before it can affect
TLB entries. SGX therefore flushes the TLB and internal
paging-structure caches whenever entering or exiting an
enclave, and requires the OS to engage in a hardware-
verified protocol that ensures proper TLB invalidation
before evicting an EPC page.

SGX’s dual permission lookup scheme prevents ma-
licious system software from mounting active memory
mapping attacks [9]. The output of the address translation
process is considered untrusted, and the most restrictive
of both permissions is applied. However, this design also
implies that an attacker controlling page table permissions
can cause enclave code to cause page faults, and be noti-
fied when certain pages are accessed. This property lies at
the basis of the page fault attacks described in Section 2.3.

Enclave Entry and Exit. SGX enclaves are embedded
in the address space of an untrusted user mode applica-
tion, and can be internally multithreaded. They have to
be explicitly entered by means of a dedicated eenter
instruction that switches the logical processor to enclave
mode, and transfers control to a predetermined entry point
in the enclave’s code section. The untrusted application
context can exchange data with the enclave via unpro-
tected memory. A processor running in enclave mode
can be switched back programmatically by invoking the
eexit instruction, or in case of a fault or external inter-
rupt, through a process known as Asynchronous Enclave
Exit (AEX). Upon AEX, the processor securely stores
the execution context and exit reason (exception number)
in a predetermined State Save Area (SSA) inside the en-
clave, and replaces CPU registers with a synthetic state
before transferring control to the untrusted OS exception
handler specified in the Interrupt Descriptor Table (IDT).
In case of a page fault, SGX also takes care of zeroing
out the twelve least significant bits of the faulting address,
revealing only the page number, but not the 12-bit offset
within that page.

Importantly, SGX enclave threads are unaware of in-
terrupts by design, and have to be resumed explicitly by
invoking eresume from the unprotected application con-
text. The eresume instruction takes care of restoring the
previously saved processor state, and redirects control

flow to the instruction pointer specified in the SSA frame.
SGX allows an enclave to register trusted in-enclave ex-
ception handlers with a cooperative OS. For this to work,
eenter has to be explicitly called before eresume, so as
to allow the previously interrupted enclave to inspect and
modify its internal SSA frame. Since eresume cannot be
intercepted however, an enclave has no way of enforcing
its internal exception handler to be actually called.

SGX’s exception model ensures that the untrusted op-
erating system remains in control of shared platform re-
sources such as memory or CPU time, and prevents direct
information leakage of register contents. However, partial
information on the enclave’s internal state still leaks to the
OS via exception vectors, and the access type and page
base address in case of a page fault.

2.2 Attacker Model and Assumptions

The adversary’s goal is to derive sensitive application data
processed in an enclave. We assume the standard SGX
threat model where an attacker has full control over privi-
leged system software including the operating system and
hypervisor. The attacker has full control over OS schedul-
ing decisions; she can pin specific threads to specific CPU
cores, and interrupt enclaves repeatedly. She can further-
more modify all non-enclaved parts of the application.
Like previous SGX attacks [48, 40, 13, 37, 28], we finally
assume knowledge of the (compiled) source code of the
target application.

At the system level, we assume a classical MMU-based
architecture where the system software maintains a multi-
level page table data structure in OS memory to control
virtual to physical page mappings. We assume the OS is
in control of enclave page mappings, whereas the PMA
guarantees the confidentiality and integrity of enclave
pages, and properly verifies address translations to protect
against page remapping attacks. Importantly, in contrast
to previously published controlled-channel attacks dis-
cussed below, we assume a PF-oblivious attacker model
where any page faults in enclave mode are hidden from
untrusted system software. Our notion of stealthiness
thus requires an attacker to infer page access patterns
from an enclaved execution that never suffers a page fault.
In addition, to stay under the radar of remote attestation
schemes [39] that require the user’s approval for each
enclave invocation, our stealthy adversary should extract
information from a single run of the victim enclave.

2.3 Controlled-Channel Attacks

This section briefly revisits previous research on page
fault-driven attacks and defenses. We first explain how
sensitive information can be derived from an enclave’s



page fault behavior, and thereafter elaborate on recently
proposed state-of-the-art defense techniques.

Tracking Page Faults. As explained above, a page
fault during enclave execution triggers an AEX that hands
over control to the untrusted operating system, reveal-
ing the base address of the faulting page. A malicious
OS can exploit this property to obtain a page-level trace
of enclave execution by clearing the “present” bit in the
Page Table Entries (PTEs) that form the enclave’s virtual
address space. For maximal information leakage, an ad-
versary allocates at most one code page and up to two
operand data pages at all times. Furthermore, the access
type can be inferred by manipulating the “writable” and
“execute disable” PTE attributes.

Seminal work by Xu et al. [48] first showed how to
exploit the page fault side-channel in a deterministic way.
Their controlled-channel attacks exploit secret-dependent
control flow and data accesses in unmodified legacy ap-
plications running on top of the SGX-based Haven [3]
architecture. To overcome the coarse-grained page-level
granularity, they observe that the sequence of preceding
page faults can be used to uniquely identify a specific
memory access. The controlled-channel attack relies on
an exhaustive offline analysis of the target application
binary to identify page fault sequences, and afterwards
uses this information to extract rich information (full text
and images) without noise from a single run of the victim
enclave. Subsequent work by Shinde et al. [40] demon-
strated that the page fault channel is sufficiently strong to
extract cryptographic key bits from unmodified versions
of OpenSSL and Libgcrypt.

Proposed Defenses. Ferraiuolo et al. [12] propose the
use of dedicated CPU instructions to prevent certain pages
from being swapped out of the protected memory area.
This defense technique overlooks however that page faults
can also be caused by directly modifying PTE attributes
controlled by the OS. Shinde et al. [40] introduce the
notion of PF-obliviousness which requires that any infor-
mation leaked via page fault patterns can also be learned
from running the program without inducing any page
faults. They propose a compiler-based solution called
deterministic multiplexing to generate PF-oblivious pro-
grams that unconditionally access all code and data pages
at the same level of the execution tree. Without developer-
assisted optimizations however, their approach exhibits
unacceptable performance overheads [40] in practical ap-
plication scenarios, which is why they also propose a
hardware-assisted solution. In the contractual execution
model, an enclave agrees with the untrusted OS that a
number of sensitive pages remain mapped in its address
space. The hardware is modified to report page faults
directly to the enclave, without OS intervention, so as

to enable protected enclave programs to detect contract
violations. The enclave’s fault handler can decide to ei-
ther forward the page fault to the OS, abort the enclave
program, or perform a fake execution to hide the page
fault completely.

It seems that Intel made a first step towards supporting
contractual execution on SGX platforms. As per revision
2 of the SGX specification [21], AEX can optionally store
information about page faults in the interrupted enclave’s
SSA frame. This allows an SGX enclave to register a
trusted exception handler for page faults. As explained
in Section 2.1, however, the unprotected application can
trivially eresume an enclave without first calling its des-
ignated exception handler. That is, the SGX v2 design still
leaves enclaves explicitly unaware of interrupts or page
faults. In response, Shih et al. [39] present a pragmatic ap-
proach to contractual execution on SGX platforms. Their
solution, called T-SGX, leverages hardware support for
Transactional Synchronization eXtensions (TSX) in re-
cent Intel processors [23]. TSX was designed to syn-
chronize the critical sections of multiple threads without
the overhead of software-based locks. Code executing
in a TSX transaction is aborted and automatically rolled
back whenever encountering a cache conflict or exception.
The security argument of T-SGX relies on the impor-
tant property that a page fault during a TSX transaction
immediately transfers control to a user-level transaction
abort handler, without first notifying the OS. In case of
an external interrupt on the contrary, the normal AEX
procedure vectors to the OS, but TSX ensures that the
in-enclave transaction abort handler is called on eresume.
The T-SGX compiler wraps each basic block in a TSX
transaction, and uses a carefully designed springboard
page to hide page faults across transactions. Since TSX
lacks hardware support to distinguish between page faults
and regular interrupts in the abort handler, T-SGX restarts
transactions by default, and only terminates the enclave
program after counting too many consecutive aborts of
the same transaction. Since the OS is made unaware of
page faults, an adversary learns at most one page access
by observing early program termination. T-SGX prevents
reruns by requiring the remote enclave owner’s consent
before starting the enclaved application.

Note that T-SGX does not consider frequent enclave
preemptions suspicious (up to 10 consecutive transac-
tion aborts are allowed for each individual basic block).
Between the submission and acceptance of this paper,
however, more recent work was published [7] that lever-
ages TSX to not only hide page faults, but also monitor
suspicious interrupt rates. We discuss this heuristic de-
fense technique and its implications for our attacks in
more detail in Section 6.

Finally, Costan et al. [10] present a hardware-software
co-design called Sanctum that represents a more radical



approach to eliminate controlled-channel attacks. Not
only does Sanctum dispatch page faults directly to en-
claves, but it also allows them to maintain their own
virtual-to-physical mappings in a separate page table hi-
erarchy in enclave-private memory. As further explored
in Section 6, this design decision effectively prevents
directed page table-based attacks from the OS. While
Sanctum explicitly identifies information leakage from
“accessed” and “dirty” page table attributes as a motiva-
tion for enclave-private page tables, we are the first to
provide an exploitation strategy and to explore the impli-
cations of this side-channel.

3 Stealthy Page Table-Based Attacks

In this section, we present the design of our novel page
table-based attacks. We first introduce two distinct ways
in which a PF-oblivious attacker can detect page accesses
after the enclave has programmatically been exited. Next,
we present our approach to dealing with cached TLB
entries for subsequent accesses to the same page. We
finally explain how to infer conditional control or data
flow in large programs by correlating subsequent page
accesses in page sets as a more stealthy alternative to the
page fault sequences introduced by Xu et al. [48].

3.1 Monitoring Page Table Entries
As a running example, consider the leftmost code snippet
in Fig. 2, where we assume that a and b reference different
data pages. In the classical controlled-channel attack [48,
40], an adversary would revoke access rights on both
pages before entering the enclave, and learn the secret
input by observing a page fault on either a or b.

1 void inc_secret (int s) {
2 if (s)
3 ∗a += 1;
4 else
5 ∗b += 1;
6 }

1 int compare_and_swap (
int old, int new) {

2 if (∗a == old)
3 return (∗a=new);
4 else return ∗a;
5 }

Figure 2: Example code with secret-dependent data flow.

Our attacks are based on the important observation
that a processor in enclave mode accesses unprotected
page table memory during the address translation process.
The key intuition is to exploit side-effects of the page
table walk to identify which page has been accessed. In
the following, we show that an adversary with access to
unprotected page table memory can learn the secret input
without resorting to page faults, either explicitly via page
table attributes, or implicitly by observing cache misses.

A/D Bits. Since memory is a limited system resource,
swapping out pages is benign OS behavior. To help
memory-management software make an informed deci-
sion, Intel x86 processors [23] explicitly provide insight
into an application’s memory usage via page table at-
tributes. The CPU’s address translation logic sets a ded-
icated Accessed (A) bit whenever reading a page table
entry, and takes care to set the Dirty (D) flag the first
time a page has been written to. A/D attributes are stored
in kernel-space memory, alongside the physical address
of the page being referenced by the corresponding PTE
entry, and need to be explicitly cleared by software.

We experimentally confirmed that A/D bits are also
updated in enclave mode. An adversary inspecting these
PTE attributes after enclave execution is thus provided
with a perfect, noise-free information channel regarding
the accessed memory pages. She can furthermore unam-
biguously distinguish between read and write accesses to
the same page. In our inc_secret example, the secret
input is directly revealed through the “accessed” bit of
the PTEs referenced by a respectively b. The right-hand
side of Fig. 2 provides a more subtle example where the
data page referenced by a is first accessed, and thereafter
either written to, or read again. An adversary can distin-
guish between these cases using the “dirty” PTE attribute.
Note that a page fault-based attack could derive the same
information using the “writable” attribute, if stealthiness
is not a concern.

Cache Misses. Since modern CPUs can process data
an order of magnitude faster than it can be fetched from
DRAM, they rely on on an intricate cache hierarchy to
speed up repeated code and data accesses. Contemporary
Intel CPUs [23] feature three levels of multi-way, set-
associative caches for instruction/data memory, and a
separate TLB plus specialized paging-structure caches to
accelerate address translation. Cache memories introduce
a measurable timing difference for DRAM accesses and
enable a powerful class of microarchitectural side-channel
attacks, for they are shared among all software running
on the platform.

A reliable and powerful class of access-driven cache
attacks based on the FLUSH+RELOAD [50] technique
exploits the availability of physical shared memory be-
tween the attacker and the victim, as is often the case with
shared libraries. FLUSH+RELOAD relies on the clflush
instruction that invalidates from the entire cache hierar-
chy all entries corresponding to a specified virtual address.
To spy on a victim application, an adversary explicitly
flushes a specified address in the shared memory region.
Afterwards, she carefully times the amount of time it takes
to reload the data, so as to determine whether or not the
address has been accessed by the victim in the meantime.

One cannot directly apply FLUSH+RELOAD techniques



to SGX enclaves, since the clflush instruction requires
read permissions on the provided memory location [23].
So it seems that properly implemented SGX enclaves do
not share physical memory with their untrusted environ-
ment. We make the important observation, however, that
an SGX enclave still implicitly shares unprotected page
table memory with the operating system. Since page table
entries are stored in regular DRAM, they are subject to
the same caching mechanisms as any other memory lo-
cation [23, 15] Additionally, modern Intel CPUs employ
an internal paging-structure cache for page table entries
that reference other paging structures (but not those that
map pages), and cache physical addresses in the TLB. As
explained in Section 2.1, the processor’s internal TLB and
paging-structure caches are cleared whenever entering or
exiting an enclave. However, since the data cache hierar-
chy remains explicitly untouched, an adversarial OS can
perform a FLUSH+RELOAD-based cache timing attack
on the page table itself.

In our inc_secret running example, a kernel-space
attacker uses clflush to evict the last-level PTEs refer-
enced by a as well as b, before entering the enclave. After
the enclave has returned, she learns the secret input by
carefully recording the amount of time it takes to reload
the relevant PTEs. The latter can easily be achieved on
x86 processors using the rdtsc instruction. We exper-
imentally ascertained a timing penalty of at least 150
cycles for PTE entries that miss the cache, practically
turning our FLUSH+RELOAD page table attack into a
reliable way to decide enclave page accesses.

Discussion. Cache timing attacks on page table mem-
ory reveal a fundamental flaw in the SGX design. That
is, walking the untrusted page table during enclave execu-
tion discloses memory accesses at page-level granularity,
even when faults would be suppressed and A/D bits are
masked. However, as compared to the A/D channel, a
cache-based attack suffers from a few limitations. First,
one cannot distinguish between read and write accesses to
the same page. This is not really a practical concern, how-
ever, since previous fault-based attacks [48, 40] do not
rely specifically on write accesses. A second limitation
considers the processor’s prefetch unit [22, 17] that loads
adjacent data speculatively into the cache. Specifically,
during the reload phase of FLUSH+RELOAD, subsequent
measurements might be destroyed. We develop a strategy
to robustly infer page access patterns in the presence of
false positives in Section 3.3.

A more severe limitation affects the granularity at
which we can see page accesses. Since CPU caches ex-
ploit spatial locality, they fetch data from DRAM more
than one byte at a time. The atomic unit of cache orga-
nization is called a cache line and measures 64 bytes on
recent Intel processors [23]. A PTE entry on the other

1 point ec_mul (int d, point P) {
2 point Q = 0; int n = nbits(d);
3 for (int i = n−1; i >= 0; i−−) {
4 Q = point_double(Q);
5 if (d & (0x1 << i))
6 Q = point_add(Q, P);
7 }
8 return Q;
9 }

point_double

ec_mul

point_add

Page P1

P2

P3

Figure 3: Elliptic curve scalar point multiplication.

hand occupies only 8 bytes, implying that eight adjacent
PTEs share the same cache line. PTE monitoring at a
cache line granularity can thus conveniently be modelled
as spying on enlarged (8∗4 KB= 32 KB) pages.

3.2 Monitoring Repeated Accesses
So far, we only described how to detect memory page
accesses after the enclave program has returned to its un-
trusted execution context. This suffices to extract secrets
from the elementary code snippets in Fig. 2. More realis-
tic scenarios, however, repeatedly operate over the same
code or data in a single start-to-end run.

As an example, consider the pseudocode for elliptic
curve scalar point multiplication in Fig. 3, where a pro-
vided point P is multiplied with a secret scalar d to obtain
another point Q. The algorithm uses the double-and-add
method, a variation of square-and-multiply used for mod-
ular exponentiation in a.o. RSA, and widely studied in
side-channel analysis research [26, 8, 49, 50, 40]. We
elaborate more on elliptic curve cryptography, and suc-
cessfully attack Libgcrypt’s implementation of the algo-
rithm in Section 5.2. For now, we assume the ec_mul
function is situated on code page P1, whereas the subrou-
tines point_double and point_add are located on dis-
tinct pages P2 and P3. Previous fault-driven attacks [40]
recovers the private scalar by observing different page
fault sequences for iterations corresponding to a one
(P1,P2,P1,P3,P1,P2) or zero (P1,P2,P1,P2) bit.

The key difference in our stealthy attacker model, as
compared to the page fault channel, is that we are not
notified in case of a memory access. Instead, page ta-
ble entries should be explicitly monitored to establish
whether they have been accessed or not. If the adversary
only probes PTEs after enclave execution, she is left with
aggregated information only (e.g., all pages P1, P2, and P3
have been accessed). We therefore introduce a dedicated
spy thread that monitors PTE entries in real-time, while
the victim executes. The main challenge now becomes
that SGX caches address translations in the TLB, imply-
ing that only the first access to a specific page results in a



page table walk. Subsequent accesses to the same page
most likely hit the TLB, and will not be observed by a spy
thread monitoring page table memory. In the following,
we present our approach to overcoming this challenge.

Flushing the TLB. We explicitly interrupt the enclaved
victim application in order to reliably evict cached ad-
dress translations without provoking page faults. Note
that we don’t even have to invalidate TLB entries explic-
itly, since an SGX-enabled processor automatically takes
care of this during the AEX process. An adversary is left
with two choices. She can either periodically interrupt
the enclave with a timer-based preemption, or she can
conditionally interrupt the victim CPU from a snooping
thread. The timer-based approach would have to inter-
rupt the victim enclave at a high frequency to minimize
the risk of missing page accesses. Since SGX leaves
enclaves interrupt-unaware by design, they have no way
of detecting these frequent preemptions. Some of the
enhanced PMA designs [10, 39] targeted by our stealthy
attacker, however, redirect interrupts as well as page faults
to a trusted enclave entry stub. Such fortified enclaves
could recognize suspicious interrupt rates as an artefact
of the attack, defeating our argument for stealthiness. We
therefore opted for the second option that conditionally
interrupts the victim CPU minimally. In this respect, note
that concurrent, unpublished work [46] has demonstrated
that Intel’s HyperThreading technology can be abused to
evict TLB entries from a co-resident logical processor in
real-time, without interrupting the victim enclave.

Our spy thread monitors one or more page table entries
in a tight loop, preempting the victim enclave CPU after
a page access has been detected. The latter can be easily
achieved in multiprocessor systems through a directed
Inter-Processor Interrupt (IPI), specifically designed to
a.o., synchronize address translations across cores. From
the point of view of the enclave, IPIs are directly handled
by the CPU’s local Advanced Programmable Interrupt
Controller (APIC), and are thus indistinguishable from
regular interrupts sent by a benign operating system.

Monitoring A/D Bits. We experimentally confirmed
that the “accessed” PTE attribute is only updated during
the first page walk, since subsequent accesses hit the
TLB. Furthermore, we found that the “dirty” attribute
is independently set once for the first subsequent write
access to that page. In the A/D implementation of our spy
thread, an IPI is sent as soon as the A bit of the monitored
PTE entry flips. Alternatively, an adversary can choose to
only interrupt the victim enclave when the D flag changes.
This might allow for a slightly stealthier attack, which
interrupts the victim minimally, as pages are typically
more often read than written to.

(a) Victim PTE access maccess

(b) FLUSH+RELOAD hit

(c) FLUSH+RELOAD miss reload

(d) FLUSH+FLUSH hit flush

time

Figure 4: FLUSH+FLUSH as a high-resolution, low-
latency channel to spy on victim PTE memory accesses.

Monitoring PTE Memory Accesses. In a classical
FLUSH+RELOAD attack [50], time is divided into slots.
The spy program flushes the monitored cache lines at the
start of each time slot, and reloads them at the end to find
out whether they have been accessed by the concurrent
victim program executing independently. When the vic-
tim’s memory access overlaps with the flush or reload
phases of the spy thread however, the measurement might
be lost, as illustrated in Fig. 4c. Naturally, the probability
of an overlapping victim access increases as the length
of the time slot decreases, whereas a longer time slot
increases detection latency and might miss subsequent
memory accesses by the victim. As such, a trade-off is
presented between attack resolution and accuracy.

When reloading PTEs after the enclave has been exited,
as in the start-to-end examples of Fig. 2, our measure-
ment cannot be destroyed by a concurrent victim access.
This is not the case, however, when monitoring page table
memory in real-time from a spy thread. Moreover, the
victim only makes a single memory access to the mon-
itored PTE entry, for subsequent accesses to the same
page hit the TLB. In a classical FLUSH+RELOAD attack
on the other hand, a missed memory access can be com-
pensated for by subsequent accesses in the next time slot.
We therefore chose to adopt a novel technique called
FLUSH+FLUSH [16] that abuses microarchitectural tim-
ing differences in the execution time of the x86 clflush
instruction, which depends on whether the data is cached
or not. A spy thread that repeatedly flushes a specific
PTE entry will observe a slightly higher execution time
when the page has been accessed by the victim, as il-
lustrated in Fig. 4d. Spying on page table memory the
FLUSH+FLUSH way thus ensures we can see all page
accesses with a minimal detection latency.

FLUSH+FLUSH also confronts us with a new challenge
however, since the microarchitectural timing differences
of the clflush instruction are inherently more subtle
than the apparent timing penalty for a DRAM access in
FLUSH+RELOAD [16]. On the bright side, clflush does
not trigger the processor’s prefetcher, and therefore does
not destroy subsequent measurements, a known concern
for FLUSH+RELOAD [17]. We furthermore remark that,
if needed, the spy thread can be made more robust by



monitoring multiple code or data PTEs that each should
be accessed before sending the IPI.

3.3 Inferring Page Access Patterns
An essential ingredient of the attack procedure outlined so
far, is that we interrupt the victim enclave via a targeted
IPI from the spy thread. Some time passes however before
the victim is interrupted, since the spy CPU cannot instan-
taneously detect PTE accesses and send the IPI. During
this time interval, the victim enclave continues to exe-
cute instructions that may access additional code and data
pages. Previous controlled-channel attacks on the con-
trary instantaneously trap to the OS in case of a page fault.
This enables a PF-aware adversary to unambiguously dis-
tinguish two successive enclave instructions, whereas the
accuracy at which we can see subsequent page accesses is
constrained by IPI latency. In this respect, a fault-driven
attack can be modelled as having zero latency between
detecting a page access and interrupting the victim.

Page Fault Sequences. Naturally, page table-based at-
tacks have to deal with the limitation that they can only
see memory accesses at a page-level granularity. Since
functions as well as data objects typically share the same
memory page with other functions or data objects, one
cannot directly identify specific function or data accesses
in a large enclave program. Xu et al. [48] overcome this
challenge by identifying unique page fault sequences that
lead to a particular code or data access. Since a PF-aware
attacker does not have to cope with latency in the measure-
ment process, she may construct page access sequences
at instruction-level granularity.

In the running example of Fig. 3, the ec_mul function
on P1 serves as a trampoline to redirect control flow to
either point_double on page P2 or point_add on page
P3, based on the secret scalar bit under consideration. A
one bit can be identified by the sequence (P2,P1,P3,P1,P2).
An observed page fault sequence of (P2,P1,P2) on the
other hand, corresponds to an iteration with a zero bit.
One approach would be to implement a state machine in
the spy thread to recognize such sequences. However, as
the intermediate P1 accesses are only a few instructions
long, they could be easily missed by a stealthy spy that
has to take IPI latency into account. Moreover, page
fault sequences presuppose a completely noise-free way
of establishing enclave page accesses. Recall from the
above discussion, however, that FLUSH+RELOAD may
suffer from occasional false positives by triggering the
processor’s prefetcher.

Page Sets. To correlate subsequent page accesses in
large enclave programs, we introduce the notion of page
sets as a robust alternative to page fault sequences. Our

spy thread continuously monitors one or more PTEs, from
here on referred to as the trigger page(s), and interrupts
the victim enclave as soon as an access is detected. Upon
IPI arrival, the spy establishes the set of pages (not) ac-
cessed by the victim, using one of the techniques from
Section 3.1. Since the TLB is cleared whenever enter-
ing or exiting the enclave, these pages must have been
accessed at least once by the victim from the previous
interrupt up to now. We make the key observation that
specific points in the execution trace of a large enclave
program can be uniquely identified by matching the pat-
tern of all pages accessed or not accessed in between two
successive accesses to a trigger page. Note that informa-
tion recovery via page sets is inherently stealthier than
the previously proposed page fault sequences [48, 40] in
that victim enclaves are only interrupted when accessing
the trigger page. Where a page fault only leaks one bit
of information (i.e., the trigger page was accessed), our
notion of page sets allows a spy to capture the maximum
information for every trigger page interrupt.

Applying our page set theory to the running exam-
ple of Fig. 3, the spy thread monitors the trigger page
P2 holding a.o., point_double, and matches the page
set {P1,P3} on every interrupt. If both P1 (ec_mul) and
P3 (point_add) have been accessed, the iteration corre-
sponds to a one bit. Likewise, if P1 has been accessed, but
not P3, the iteration processed a zero bit. Finally, in case
P1 as well as P3 were both not accessed, P2 must have
been accessed from an execution context other than the
targeted point_double invocation, and we classify the
interrupt as a false positive.

After identifying secret-dependent control flow or data
accesses in the victim application, a successful attack
comes down to designating specific pages to be tracked in
the spy thread, and recognizing the associated page set pat-
terns. Analogous to previous fault-based attacks [48, 40],
we first perform a detailed offline analysis of the enclaved
application binary to extract an ideal trace of instruction-
granular page accesses for a known input. From this ideal
trace, we select a suitable candidate trigger page, and we
construct the sets of all pages accessed or not accessed in
between two hits on the trigger page. By comparing the
resulting page sets, we are left with a page set pattern that
(uniquely and robustly) identifies a specific point in the
victim’s execution trace.

4 Implementation

Similar to previous controlled-channel attacks [48, 40],
our exploits target unmodified legacy applications running
under the protection of a PMA. The enclaved application
binary is protected from the untrusted host operating sys-
tem by means of a shielding system that provides trusted
library services, and interposes on system calls. Previ-



ous controlled-channel attacks on Intel SGX were imple-
mented for the Haven [3] shielding system. Since Haven
is not publicly available, we implemented our attacks on
the open-source1 Graphene-SGX library OS [45]. We
first briefly overview the internals of Graphene-SGX, and
thereafter explain how we extended the untrusted runtime
with a reusable attacker framework.

Graphene-SGX. Library OSs such as Graphene [44]
repackage conventional OS kernel services into a user-
mode application library. System calls made by the legacy
application are transparently transformed into libOS func-
tion calls, which are then either processed locally, or
translated into a minimal host kernel ABI that provides
core OS primitives. The libOS relies on a small Platform
Adaptation Layer (PAL) to translate platform-independent
host ABI calls into a narrow set of system calls to the un-
derlying host operating system, which remains, however,
explicitly trusted from a security perspective.

Graphene-SGX [45] – like other recently proposed
SGX-based shielding systems including Haven [3],
Panoply [41], and SCONE [2] – improves over this situ-
ation by not only protecting libOS instances from each
other, but also from a malicious host operating system.
To this end, Graphene-SGX encapsulates the entire li-
bOS, including the unmodified application binary and
supporting libraries, inside an SGX enclave. Graphene
also inserts a trusted runtime with a customized C library
and ELF loader in the enclave. Since SGX prohibits en-
claves from making system calls directly, the PAL is split
into a trusted part that calls out to an untrusted runtime
in the containing application to perform the system call
to the untrusted host OS. Graphene-SGX furthermore re-
lies on an untrusted Linux driver for enclave creation/tear
down and protected memory management via the dedi-
cated ring-zero SGX instruction set.

Attack Framework. We implemented our attacks as
an extension to Graphene’s untrusted runtime, leaving
the trusted in-enclave components unchanged. Our im-
plementation is conceived as a reusable framework to
facilitate eavesdropping on different application binaries.

Figure 5 summarizes the steps undertaken by our attack
framework. 1 The untrusted user space runtime creates
a separate spy thread just before entering the enclave’s
main function. We affinitize the spy and victim threads
to their own physical CPU cores to avoid any noise from
page table shoot downs by the OS scheduler. 2 The
newly created spy thread continues its execution in kernel
space by calling to our modified Graphene-SGX driver.
We run our core attacker code in kernel mode to be able to
easily send IPIs, inspect PTE attributes, and monitor page

1https://github.com/oscarlab/graphene

App Binarylibc

Graphene TRTS

Enclave

Graphene URTSApp

spy

PTE Set

Driver
Page Table

Kernel

Hardware

1 5

2

3

8

4

7

IPI E
6

Figure 5: Graphene-SGX attack framework interaction.

table memory. 3 The spy first goes through a pluggable,
attack-specific initialization phase that creates the page
sets to be monitored. 4 After synchronizing with the
victim thread, which is still waiting to enter the enclave,
the spy enters a tight probing loop that measures either
clflush execution time, or A/D attributes of one or more
page table entries. 5 Victim thread enters the enclave.
6 Upon detecting an access on the trigger page, the spy

interrupts the victim thread as soon as possible. 7 The
IPI handler on the victim CPU now establishes the ac-
cess pattern for the monitored page set using either the
noise-free FLUSH+RELOAD or A/D mechanism. Page set
access patterns are logged for later parsing by an attack-
-specific post-processing script. 8 Spy and victim threads
synchronize once more before resuming the enclave.

So far, we assumed the attacker obtained the page ad-
dresses to be monitored from an objdump of the applica-
tion binary. Graphene, like other SGX-based shielding
systems [3, 41, 2], does not randomize the base address
of loaded executables. Instead, applications and support-
ing libraries (including libc) are loaded at deterministic
memory locations. To easily discover executable base
addresses, we propose to first deploy the target applica-
tion binary in an attacker-controlled libOS instance that
we minimally modified to leak load addresses. SGX’s
remote attestation scheme properly prevents us from de-
ploying the modified libOS instance when running the
application for the remote stakeholder, but the observed
load addresses will be identical. Note that it has been
shown [48] that hypothetical support for conventional ad-
dress space layout randomization, which only randomizes
the application’s base address, could be easily defeated
by observing page access patterns.

Inter-Processor Interrupts. In a page fault-driven at-
tack, the victim enclave is exited immediately when ac-
cessing a monitored page. For our PF-oblivious attacks

https://github.com/oscarlab/graphene


on the contrary, we define IPI latency as the number of
instructions executed by the victim enclave after access-
ing a trigger page, and before being interrupted by the spy
thread. Reducing IPI latency is an important implementa-
tion consideration in that it defines the accuracy at which
we can see subsequent page accesses. Before quantifying
latency in the evaluation section, we present some general
implementation techniques to minimize IPI latency.

Our driver hooks into an unused IPI vector of Linux’s
KVM subsystem by registering the address of our inter-
rupt handler in the system-wide IDT. This allows us to
send the IPI promptly from assembly code in the spy
thread by writing to the relevant memory-mapped APIC
address, instead of having to rely on Linux’s IPI subsys-
tem that performs bookkeeping on shared data structures
before sending the interrupt. To further reduce IPI latency,
we considered a previously proposed [28] technique that
sets the “cache disable” bit in the CR0 control register to
disable the L1, L2, and L3 cache on the CPU running the
victim enclave. We experimentally confirmed that this
technique dramatically slows down the victim thread, and
substantially reduces the number of instructions executed
after accessing a trigger page. However, setting CR0.CD
on the victim CPU invalidates our cache-based PTE tim-
ing attack vector. Moreover, the aforementioned T-SGX
defense [39] would be able to detect this technique, for
TSX relies on the CPU cache to start transactions [23].

Analyzing Page Sets. With our attack framework in
place, the main challenge left is to select the pages that
need to be tracked in the spy thread. To study the be-
havior of target applications, previous controlled-channel
attacks [48] record a complete, byte-granular trace of
page fault addresses by running the application outside of
the enclave with at most one code and data page allocated
at all times. We simplify this process via a GNU debugger
script that extracts an instruction-granular code page trace
by single-stepping through the unprotected application
binary, recording the symbolic name and virtual page ad-
dress of the instruction pointer. Furthermore, by placing
strategic breakpoints, the debugger script can easily be
instrumented to mark individual loop iterations.

To construct the most stealthy attack, we select a trig-
ger page that is minimally accessed in the extracted trace,
and we compose a set of remaining pages that unambigu-
ously identifies the code page access of interest. When
running the attack on an enclaved application binary, our
driver dumps page set patterns for all accesses on the
trigger page. Afterwards, we use a small, attack-specific
post-processing script to match the desired patterns in
the driver output. If needed, the pattern to be matched,
can also include the page sets of previous or succeeding
trigger page accesses, and can be made more robust by
means of a regular expression.

Table 1: IPI latency in terms of the number of instructions
executed by the victim after accessing the trigger page.

ACCESSED FLUSH+FLUSH

Experiment Mean σ Mean σ Zero %

nop 431.70 34.11 0.65 17.65 99.84
add register 176.30 14.60 0.15 6.18 99.94
add memory 32.45 2.79 0.06 1.92 99.88
nop nocache 0.02 0.39 – – –

5 Evaluation

In this section, we evaluate our attack framework. We
first provide microbenchmarks to quantify IPI latency,
and thereafter demonstrate the effectiveness of our attacks
by extracting EdDSA session keys from an unmodified
binary of the widely used Libgcrypt cryptographic library.

All experiments were conducted on publicly available
off-the-shelf SGX hardware. We used a commodity Dell
Inspiron 13 7359 laptop with a Skylake dual-core Intel
i7-6500U processor and 8 GB of RAM. The machine runs
Ubuntu 15.10, with a generic 64-bit Linux 4.2.0 kernel.
To prevent any noise from OS scheduling decisions, we
disabled HyperThreading and reserved a dedicated CPU
for the spy thread using Linux’s isolcpus boot option.
We based our attack framework on a recent master check-
out of the Graphene project, compiled with gcc v5.2.1.

5.1 IPI Latency Microbenchmarks
Recall from Section 4 that we want to minimize the num-
ber of instructions executed by the victim enclave after
accessing a trigger page, and before being interrupted by
a targeted IPI from the spy thread. In order to reliably
quantify IPI latency, we wrote a small microbenchmark
application that first accesses an isolated memory page,
and immediately thereafter starts executing an instruction
slide of 5,000 identical x86 instructions. For the mi-
crobenchmark experiments, we instrumented our driver to
retrieve the instruction pointer stored in the SSA frame of
the interrupted debug enclave through the edbgrd SGX
instruction. The exact number of instructions executed in
the microbenchmark application can be inferred by com-
paring the retrieved instruction pointer with the known
start address of the instruction slide.

Interrupt Granularity. Table 1 records IPI latencies
for different x86 instructions. We repeat all experiments
10,000 times for a spy thread that monitors the trigger
page through the “accessed” PTE attribute, as well as
for a spy that repeatedly flushes page table memory lo-
cations. We present the mean and the standard deviation
(σ ) to characterize IPI latency distributions. In the first



experiment, we prepare an instruction slide with ordi-
nary no-operations. The upper row of Table 1 reveals
a first important result. That is, our benchmark enclave
can only be interrupted by an A/D spy at a relatively
coarse-grained granularity of about 430 nops, whereas
the novel FLUSH+FLUSH technique immediately inter-
rupts the victim thread. Note that interrupts with zero
IPI latency arrive within the instruction that accessed
the trigger page, even before the next enclave instruc-
tion started executing. The last column, which lists the
percentage of interrupts with zero IPI latency, distinctly
shows that a victim thread monitored by a FLUSH+FLUSH
spy is interrupted within the trigger instruction with very
high probability (99.84%). As such, FLUSH+FLUSH
represents a precise, instruction-granular, technique to
interrupt victim enclaves, improving significantly over
related state-of-the-art enclave execution control propos-
als [47, 28, 33]. We furthermore found the technique to
be reliable, for FLUSH+FLUSH recorded all 10,000 page
accesses, without false positives, and with significantly
less noise (smaller standard deviation) than an A/D spy.

The increased advantage of a FLUSH+FLUSH spy, as
opposed to a spy monitoring A/D bits, can be understood
from the effects on the caching behavior of the page table
walk. A PTE memory location that is continuously probed
by an A/D spy will be cached when the victim CPU per-
forms the page table walk, whereas a FLUSH+FLUSH spy
actively ensures the victim CPU misses the cache. As
such, instructions that access the trigger page will take
longer to complete, providing a wider time frame for IPI
arrival. This effect is further aggravated when the proces-
sor needs to update the “accessed” page table attribute.
For the victim CPU needs to perform another memory
access to reload the PTE entry from DRAM when the
A bit was not set, and the corresponding cache line has
been flushed by a concurrent spy thread. Interestingly,
we found that the victim’s second PTE memory access,
where the A bit is updated, is more noticeable from a
FLUSH+FLUSH spy thread. Intel’s software optimization
manual [22] indeed confirms that “flushing cache lines in
modified state are more costly than flushing cache lines
in non-modified states”.

Instruction Latency. The second and third experi-
ments investigate the influence of the microbenchmark
instruction type on IPI latency. We start from the intu-
ition that an individual nop instruction is trivial to execute
and can easily be pipelined, allowing many instructions
to be executed in the limited time period after accessing
the trigger page and before IPI arrival. The second row
of Table 1 confirms that a victim program can make sig-
nificantly less progress on an instruction slide with add
instructions that sequentially increment a processor regis-
ter. Likewise, the third row shows that IPI latency drops

even further when the victim executes a sequence of add
instructions that increment a memory location. The latter
can be explained from the additional page table walk that
retrieves the physical memory address of the data operand
for the first add instruction.

Finally, we performed an experiment that entirely dis-
ables instruction and data caching on the victim CPU by
setting the CR0.CD bit, as explained in Section 4. The
last row of Table 1 clearly shows that this approach can
almost completely eliminate IPI latency (mean and stan-
dard deviation near zero) for an A/D spy. This confirms
our hypothesis that the observed IPI latency differences
stem from the caching behavior of the page table walk. Of
course, a FLUSH+FLUSH spy cannot see page accesses
when the cache is disabled on the victim CPU.

5.2 Attacking Libgcrypt EdDSA
To illustrate the applicability of our attacks on real-world
applications, we extract private EdDSA session keys
from a general purpose cryptographic library Libgcrypt,
which used in a.o., the popular GnuPG cryptographic soft-
ware suite. More specifically, we reproduce a previously
published [40] page fault-driven attack on Libgcrypt,
showing that our stealthy attack vectors can extract the
same information without triggering any page faults.
Since Libgcrypt is officially distributed from source code,
we built unmodified binaries for Libgcrypt v1.6.3 and
v1.7.5 as well as the accompanying error-reporting library
Libgpg-error v1.26 through the default ./configure &&
make invocation, using gcc v5.2.1.

EdDSA Implementation. The Edwards-curve Digital
Signature Algorithm (EdDSA) [4] is an efficient, high-
security signature scheme over a twisted Edwards elliptic
curve with public reference point G. The security of el-
liptic curve public key crypto systems critically relies
on the computational intractability of the elliptic curve
discrete logarithm problem: given an elliptic curve with
two points A and B, find a scalar k such that A = kB.
Recall that our running example in Fig. 3 provides an
efficient algorithm for the inverse operation, i.e., multiply
a point with a known scalar. EdDSA uses scalar point
multiplication for public key generation, as well as in the
signing operation. The private key d is derived from a ran-
domly chosen large scalar value, and the corresponding
public key is calculated as Q = dG. To sign a message
M, EdDSA first generates a secret session key r, also
referred to as nonce, by hashing the long-term private
key d together with M. Next, the signature is calculated
as the tuple (R = rG,S = r + hash(R,Q,M)d). It can
be seen that an adversary who learns the secret session
key r from side-channel observation during the signing
process, can easily recover the long-term private key as



1 if (mpi_is_secure (scalar)) {
2 /∗ If SCALAR is in secure memory we assume that it is the
3 secret key we use constant time operation. ∗/
4 point_init (&tmppnt);
5

6 for (j=nbits−1; j >= 0; j−−) {
7 _gcry_mpi_ec_dup_point (result, result, ctx);
8 _gcry_mpi_ec_add_points (&tmppnt, result, point, ctx);
9 if (mpi_test_bit (scalar, j)) /∗ ← eliminated in v1.7.5 ∗/

10 point_set (result, &tmppnt);
11 }
12 point_free (&tmppnt);
13 } else {
14 for (j=nbits−1; j >= 0; j−−) {
15 _gcry_mpi_ec_dup_point (result, result, ctx);
16 if (mpi_test_bit (scalar, j))
17 _gcry_mpi_ec_add_points (result, result, point, ctx);
18 }
19 }

Figure 6: Scalar point multiplication in Libgcrypt v1.6.3.

d = (S− r)/hash(R,Q,M), with (R,S) a valid signature
for a known message M [4, 49].

Figure 6 provides the relevant section of the scalar
point multiplication routine in Libgcrypt v1.6.3. Lines
14 to 18 are a straightforward implementation of Fig. 3,
and have previously been successfully targeted in a page
fault-aware attacker model [40]. We remark however that
Libgcrypt provides some protection against side-channel
attacks by tagging sensitive data, including the EdDSA
long-term private key, as “secure memory” [25]. Lines 1
to 12 show how a hardened, add-always scalar point mul-
tiplication algorithm is applied when the provided scalar
is tagged as secure memory. However, while the hardened
algorithm of Libgcrypt v1.6.3 greatly reduces the attack
surface by cutting down the amount of secret-dependent
code, we show that even the short if branch on line 9
remains vulnerable to page table side-channel attacks dur-
ing the public key generation phase. We verified that this
defect has been addressed in the latest version v1.7.5 by
replacing the if branch with a truly constant time swap
operation. We also found, however, that Libgcrypt v1.6.3
as well as v1.7.5 do not tag the secret EdDSA session
key as secure memory, resulting in the non-hardened path
being taken during the signing phase.2

Monitoring A/D Bits. We first explain how we at-
tacked the hardened multiplication (lines 6 to 11) in
Libgcrypt v1.6.3. We found that every loop iteration ac-
cesses 21 distinct code pages, regardless of whether a one
or a zero bit was processed. Our stealthy spy thread moni-
tors the A attribute of the trigger page table entry holding
the physical page address of point_set, which is ac-
cessed 126 or 127 times each iteration, depending on the
scalar bit under consideration. We rely on a robust PTE

2 To address this shortcoming, we contributed a patch that has been
merged in Libgcrypt v1.7.7.

set of nine additional code pages whose combined A bits
unambiguously identify an unconditional execution point
in add_points as well as the conditional point_set
invocation on line 10. We refer the interested reader to
Appendix A for the complete page sets of the Libgcrypt
attacks. Our post-processing script reliably recovers the
full 512-bit EdDSA session key by counting the number
of IPIs (i.e., trigger page accesses) in between two page
set pattern hits. PTE set hits are classified as belonging to
a different iteration when the number of IPIs in between
them exceeds a certain threshold value. As such, itera-
tions that processed a one bit are easily recognized by
two page set hits, whereas zero iterations hit only once.
Our A/D attack on Libgcrypt v1.6.3 interrupts the victim
enclave about 60,000 times.

To attack the standard multiplication (lines 14 to 18)
in the latest Libgcrypt v1.7.5, we spy on the A attribute
of the PTE that references the test_bit code page. Our
offline analysis shows that the trigger page is accessed 93
or 237 times for iterations that respectively process a zero
or a one bit. The spy thread records a PTE set of four
additional code pages whose combined access patterns
uniquely identify the if branch on line 16. We reliably
recover all 512 secret scalar bits at post-processing time
by observing that the PTE set pattern repeats exactly once
every loop iteration, and the page set value for the first
subsequent trigger page access depends on whether the if
branch was taken or not. We counted only about 40,000
IPIs for our A/D attack on Libgcrypt v1.7.5.

Monitoring Cache Misses. Recall from Section 3 that
spying on page table memory at a cache line granularity
is challenging in that we can only see accesses for con-
ceptually enlarged 32 KB pages. Our offline analysis on
Libgcrypt v1.7.5 shows that every loop iteration accesses
22 code pages, belonging to three different application
libraries: Libgcrypt, Libgpg-error, and the trusted libc
included by Graphene. Only 11 of these 22 code pages
fall in distinct cache lines. Interestingly, we found that the
free wrapper function used by Libgcrypt stores/restores
the errno memory location of the trusted in-enclave libc
46 or 102 times for zero respectively one iterations. The
address of the error number for the current thread can be
retrieved via the __errno_location function, residing
at a remote location within the libc memory layout.

Our stealthy FLUSH+FLUSH spy uses the code page for
the __errno_location libc function as a reliable trig-
ger page that does not share a cache line with any of the
other pages accessed in the loop. Our cache-based attack
on Libgcrypt interrupts the victim enclave about 130,000
times for a single, start-to-end run. We furthermore con-
struct a page set covering 7 distinct PTE cache lines that
are recorded by the spy on every trigger page access, us-
ing the FLUSH+RELOAD technique after interrupting the



enclave. While the extracted page set value sequences
themselves appear quite noisy at first sight, we found that
certain values unmistakably repeat more often in itera-
tions that processed a one bit. Furthermore, the number of
IPIs (i.e., errno accesses) in between these values exhibit
clear repetitions. Our post-processing script uses a regular
expression to identify a robust pattern that repeats once
every iteration. Again, key bits can be inferred straightfor-
wardly from the number of IPIs in between pattern hits.
Using this technique, we were able to correctly recover
485 bits of a 512-bit secret EdDSA session key in a single
run of the victim enclave. Moreover, using the number
of IPIs in between two recovered scalar bits as a heuris-
tic measure, our post-processing script is able to give an
indication of which bit positions are missing.

6 Discussion and Mitigations

Frequent Enclave Preemption. Our work shows that
enclave memory accesses can be learned by spying on un-
protected page tables, without triggering any page faults.
This observation is paramount for the development of de-
fenses against page table-based threats. Specifically, state-
of-the-art PF-oblivious defenses [40, 39] do not achieve
the required guarantees. We only interrupt the enclave
when successive accesses to the same page need to be
monitored. Importantly, our attacks remain undetected by
T-SGX [39], since it allows up to 10 consecutive trans-
action aborts (interrupts) for each individual basic block.
We do acknowledge, however, that the number of inter-
rupts reported for our Libgcrypt attacks in Section 5.2
is substantially higher than what is to be expected under
benign circumstances. We can therefore see improved,
heuristic defenses using suspicious interrupt rates as an
artefact of an ongoing attack.

Indeed, Déjà Vu [7], which was first published after
we submitted this work, explores the use of TSX to con-
struct an in-enclave reference clock thread that cannot
be silently stopped by the OS. The enclave program is
instrumented to time its own activity, so as to detect the
execution slowdown associated with an unusual high num-
ber of AEXs. While Déjà Vu would likely recognize fre-
quent enclave preemptions as a side-effect of our current
attack framework, we argue that heuristic defenses do not
address the root causes of page table-based information
leakage. That is, our novel attack vectors are still appli-
cable, and depending on the victim program, interrupts
may not even be required. The knowledge that a specific
page is accessed, can reveal security-sensitive information
directly, or enable an attacker to launch a second phase
of her attack [47]. Furthermore, as part of the continuous
attacker-defender race, we expect the contributed attack
vectors to trigger improved, stealthier attacks that remain
under the radar of Déjà Vu-like defenses.

In this regard, during the preparation of the camera-
ready version of this paper, we became aware of concur-
rent, non-peer-reviewed research [46] that independently
developed page table-based attacks similar to ours. In con-
trast, their work focusses on the A/D channel rather than
PTE caching, and shows that HyperThreading technology
allows TLB entries to be evicted without interrupting the
victim enclave. As such, they effectively demonstrate
that Déjà Vu-like defenses are inherently insufficient to
eliminate page table-based threats.

Hiding Enclave Page Accesses. At the system level,
some lightweight embedded PMAs [34, 27] avoid page
table-based threats altogether by implementing hardware-
enforced isolation in a single-address-space. Alterna-
tively, some higher-end PMA research prototypes [10, 11,
30, 42] place enclave page tables out of reach of an at-
tacker. Unfortunately, we believe such an approach is un-
acceptable for Intel SGX, especially when protecting sen-
sitive application data from potentially malicious cloud
providers [3, 36]. In such use cases, the cloud provider
must be able to quickly regulate different cloud users
competing for scarce platform resources including EPC
memory. Fortified PMA designs such as Sanctum [10] on
the other hand move page tables within the enclave, and
require the OS to engage in a lengthy protocol whenever
reclaiming a physical page. Furthermore, when applying
Sanctum’s enclave-private page table design to modern
x86 processors [23], an adversary could still leverage the
Extended Page Tables (EPTs) set up by the hypervisor.
That is, any access to guest-physical pages, including the
enclave and its private page tables, results in an EPT walk
that sets accessed and dirty bits accordingly. Masking
A/D attributes in enclave mode is neither sufficient nor
desirable, as it cannot prevent our cache-based attacks,
and disrupts benign OS memory management decisions.

At the application level, we believe the academic com-
munity should investigate different defense strategies
based on the type of enclave. For small enclaves that
must be offered the highest security guarantees, auto-
mated compiler-based solutions [8] are to be considered.
Good practices applied to cryptographic software (e.g.,
not branching on a secret) may be extended to more gen-
eral approaches, such as the deterministic multiplexing de-
fense proposed by Shinde et al. [40]. For uses cases where
unmodified application binaries are loaded in an enclave,
however, such approaches would likely lead to unaccept-
able performance overhead. In such situations, the use
of more probabilistic security measures may be accept-
able. Note that previous page fault-driven research [48]
successfully defeated conventional Address Space Layout
Randomization (ASLR) schemes that randomize an appli-
cation’s base address. SGX-Shield [38], on the other hand,
implements fine-grained ASLR by compiling enclaved



application code into small 32- or 64-byte randomization
units that can subsequently be re-shuffled at load time.

7 Related Work

A recent line of work has developed PMA security archi-
tectures that support secure isolated execution of protected
modules with a minimal trusted computing base, either via
a small hypervisor [31, 30, 42, 19], or with trusted hard-
ware [29, 32, 11, 10, 34, 27]. Intel SGX represents the
first widespread PMA solution, included in off-the-shelf
consumer hardware, and has recently been put forward
to protect sensitive application data from untrusted cloud
providers [3, 36]. As such, SGX has received consid-
erable attention from the research community, and one
line of work, including Graphene-SGX [45], Haven [3],
Panoply [41], and SCONE [2] has developed small libOSs
that facilitate running unmodified legacy applications in
SGX enclaves. However, Xu et al. [48] recently pointed
out that enclaved execution environments are vulnerable
to a new class of powerful controlled-channel attacks con-
ducted by an untrusted host operating system. We have
discussed previous research results on page table-based
attacks and defenses extensively in Section 2.3. Iago at-
tacks [6] furthermore exploit legacy applications via the
system call interface, and AsyncShock [47] demonstrates
that an adversarial OS can more easily exploit thread
synchronization bugs within SGX enclaves. Finally, be-
tween submission and publication of this paper, the SGX
research community has witnessed a steady stream of
microarchitectural side-channel attacks; either by abusing
the branch prediction unit [28], or in the form of fine-
grained PRIME+PROBE [13, 37, 5, 33] cache attacks.

In a more general, non-PMA context, there exists a
vast amount of research on microarchitectural cache tim-
ing vulnerabilities [35, 50, 17]. Especially relevant to
our work is the FLUSH+FLUSH [16] channel which was
only proposed very recently, and attack research [49] that
applies FLUSH+RELOAD to partially recover OpenSSL
ECDSA nonces. Furthermore, timing differences from
TLB misses have been exploited to break kernel space
ASLR [20]. More recently, it has been shown that kernel
ASLR can also be bypassed by exploiting timing differ-
ences in the prefetch instruction [15], or by leverag-
ing TSX [24]. Finally, recent concurrent work [14] on
JavaScript environments has independently demonstrated
a page table-based cache side-channel attack that com-
pletely compromises application-level ASLR.

8 Conclusion

Our work shows that page table walks in unprotected
memory leak enclave page accesses to untrusted system

software. We demonstrated that our stealthy attack vectors
can circumvent current state-of-the-art defenses that hide
page faults from the OS. As such, page table-based threats
continue to be worrisome for enclaved execution.

Acknowledgments

We thank Ming-Wei Shih for kindly providing us with
early access to the camera-ready version of his T-SGX
paper. Jo Van Bulck and Raoul Strackx are supported by
a grant of the Research Foundation - Flanders (FWO).

References
[1] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.

Innovative technology for CPU based attestation and sealing. In
Proceedings of the 2nd international workshop on hardware and
architectural support for security and privacy (2013), vol. 13.

[2] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH, T.,
MARTIN, A., PRIEBE, C., LIND, J., MUTHUKUMARAN, D.,
O’KEEFFE, D., STILLWELL, M. L., ET AL. SCONE: Secure
Linux containers with Intel SGX. In 12th USENIX Symposium on
Operating Systems Design and Implementation (2016), USENIX
Association, pp. 689–703.

[3] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding ap-
plications from an untrusted cloud with Haven. In 11th USENIX
Symposium on Operating Systems Design and Implementation
(2014), USENIX Association, pp. 267–283.

[4] BERNSTEIN, D. J., DUIF, N., LANGE, T., SCHWABE, P., AND
YANG, B.-Y. High-speed high-security signatures. Journal of
Cryptographic Engineering 2, 2 (2012), 77–89.

[5] BRASSER, F., MÜLLER, U., DMITRIENKO, A., KOSTIAINEN,
K., CAPKUN, S., AND SADEGHI, A.-R. Software grand exposure:
SGX cache attacks are practical. arXiv preprint arXiv:1702.07521
(2017).

[6] CHECKOWAY, S., AND SHACHAM, H. Iago attacks: Why the sys-
tem call API is a bad untrusted RPC interface. In Proceedings of
the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(2013), ACM, pp. 253–264.

[7] CHEN, S., ZHANG, X., REITER, M. K., AND ZHANG, Y. De-
tecting privileged side-channel attacks in shielded execution with
déjà vu. In Proceedings of the 12th ACM on Asia Conference
on Computer and Communications Security (ASIA CCS) (2017),
ACM, pp. 7–18.

[8] COPPENS, B., VERBAUWHEDE, I., DE BOSSCHERE, K., AND
DE SUTTER, B. Practical mitigations for timing-based side-
channel attacks on modern x86 processors. In 2009 IEEE Sympo-
sium on Security and Privacy (2009), IEEE, pp. 45–60.

[9] COSTAN, V., AND DEVADAS, S. Intel SGX explained. Tech.
rep., Computer Science and Artificial Intelligence Laboratory MIT,
2016. https://eprint.iacr.org/2016/086.pdf.

[10] COSTAN, V., LEBEDEV, I., AND DEVADAS, S. Sanctum:
Minimal hardware extensions for strong software isolation. In
25th USENIX Security Symposium (2016), USENIX Association,
pp. 857–874.

[11] EVTYUSHKIN, D., ELWELL, J., OZSOY, M., PONOMAREV, D.,
GHAZALEH, N. A., AND RILEY, R. Iso-x: A flexible architecture
for hardware-managed isolated execution. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture (2014),
IEEE, pp. 190–202.

https://eprint.iacr.org/2016/086.pdf


[12] FERRAIUOLO, A., WANG, Y., XU, R., ZHANG, D., MYERS,
A., AND SUH, E. Full-processor timing channel protection with
applications to secure hardware compartments. Computing and in-
formation science technical report, Cornell University, November
2015.

[13] GÖTZFRIED, J., ECKERT, M., SCHINZEL, S., AND MÜLLER, T.
Cache attacks on Intel SGX. In Proceedings of the 10th European
Workshop on Systems Security (EuroSec’17) (2017).

[14] GRAS, B., RAZAVI, K., BOSMAN, E., BOS, H., AND GIUF-
FRIDA, C. ASLR on the line: Practical cache attacks on the
MMU. In 24th Annual Network and Distributed System Security
Symposium (NDSS) (2017).

[15] GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND MAN-
GARD, S. Prefetch side-channel attacks: Bypassing SMAP and
kernel ASLR. In Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS) (2016).

[16] GRUSS, D., MAURICE, C., WAGNER, K., AND MANGARD, S.
Flush+flush: A fast and stealthy cache attack. In Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA)
(2016).

[17] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache template
attacks: Automating attacks on inclusive last-level caches. In
24nd USENIX Security Symposium (2015), USENIX Association,
pp. 897–912.

[18] HOEKSTRA, M., LAL, R., PAPPACHAN, P., PHEGADE, V., AND
DEL CUVILLO, J. Using innovative instructions to create trust-
worthy software solutions. In HASP@ ISCA (2013), p. 11.

[19] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE, M. Z., AND
WITCHEL, E. Inktag: Secure applications on an untrusted op-
erating system. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2013), ACM, pp. 265–278.

[20] HUND, R., WILLEMS, C., AND HOLZ, T. Practical timing
side channel attacks against kernel space ASLR. In 2013 IEEE
Symposium on Security and Privacy (2013), IEEE, pp. 191–205.

[21] INTEL CORPORATION. Intel Software Guard Extensions Program-
ming Reference, October 2014. Reference no. 329298-002US.

[22] INTEL CORPORATION. Intel 64 and IA-32 Architectures Optimiza-
tion Reference Manual, June 2016. Reference no. 248966-033.

[23] INTEL CORPORATION. Intel 64 and IA-32 Architectures Software
Developer’s Manual, June 2016. Reference no. 325462-059US.

[24] JANG, Y., LEE, S., AND KIM, T. Breaking kernel address space
layout randomization with Intel TSX. In Proceedings of the 23rd
ACM Conference on Computer and Communications Security
(CCS) (2016), ACM, pp. 380–392.

[25] KOCH, W., AND SCHULTE, M. The Libgcrypt Reference Manual,
December 2016. Version 1.7.4.

[26] KOCHER, P. C. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Annual International
Cryptology Conference (1996), Springer, pp. 104–113.

[27] KOEBERL, P., SCHULZ, S., SADEGHI, A.-R., AND VARAD-
HARAJAN, V. TrustLite: A security architecture for tiny embed-
ded devices. In Proceedings of the Ninth European Conference on
Computer Systems (2014), ACM, pp. 10:1–10:14.

[28] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H., AND
PEINADO, M. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In 26th USENIX Security Sym-
posium (2017), USENIX Association.

[29] MAENE, P., GÖTZFRIED, J., DE CLERCQ, R., MÜLLER, T.,
FREILING, F., AND VERBAUWHEDE, I. Hardware-based trusted
computing architectures for isolation and attestation. IEEE Trans-
actions on Computers, 99 (2017).

[30] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,
GLIGOR, V. D., AND PERRIG, A. TrustVisor: Efficient TCB
reduction and attestation. In 2010 IEEE Symposium on Security
and Privacy (2010), IEEE, pp. 143–158.

[31] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K.,
AND ISOZAKI, H. Flicker: An execution infrastructure for TCB
minimization. In Proceedings of the 2008 EuroSys Conference
(2008), ACM, pp. 315–328.

[32] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS,
C. V., SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR,
U. R. Innovative instructions and software model for isolated
execution. In Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy
(2013), ACM, pp. 10:1–10:1.

[33] MOGHIMI, A., IRAZOQUI, G., AND EISENBARTH, T.
Cachezoom: How SGX amplifies the power of cache attacks.
arXiv preprint arXiv:1703.06986 (2017).

[34] NOORMAN, J., VAN BULCK, J., MÜHLBERG, J. T., PIESSENS,
F., MAENE, P., PRENEEL, B., VERBAUWHEDE, I., GÖTZFRIED,
J., MÜLLER, T., AND FREILING, F. Sancus 2.0: A low-cost se-
curity architecture for IoT devices. ACM Transactions on Privacy
and Security (TOPS) (2017).

[35] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks
and countermeasures: the case of AES. In Cryptographers’ Track
at the RSA Conference (2006), Springer, pp. 1–20.

[36] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C.,
PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH, M. Vc3:
Trustworthy data analytics in the cloud using SGX. In 2015 IEEE
Symposium on Security and Privacy (2015), IEEE, pp. 38–54.

[37] SCHWARZ, M., WEISER, S., GRUSS, D., MAURICE, C., AND
MANGARD., S. Malware guard extension: Using SGX to con-
ceal cache attacks. In Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA) (2017).

[38] SEO, J., LEE, B., KIM, S., AND SHIH, M.-W. SGX-Shield:
Enabling address space layout randomization for sgx programs. In
24th Annual Network and Distributed System Security Symposium
(NDSS) (2017).

[39] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Pro-
grams. In 24th Annual Network and Distributed System Security
Symposium (NDSS) (2017).

[40] SHINDE, S., CHUA, Z. L., NARAYANAN, V., AND SAXENA, P.
Preventing page faults from telling your secrets. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communi-
cations Security (ASIA CCS) (2016), ACM, pp. 317–328.

[41] SHINDE, S., TIEN, D. L., TOPLE, S., AND SAXENA, P. Panoply:
Low-TCB linux applications with SGX enclaves. In 24th An-
nual Network and Distributed System Security Symposium (NDSS)
(2017).

[42] STRACKX, R., AND PIESSENS, F. Fides: Selectively hardening
software application components against kernel-level or process-
level malware. In Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS) (2012), ACM,
pp. 2–13.

[43] TRAMER, F., ZHANG, F., LIN, H., HUBAUX, J.-P., JUELS, A.,
AND SHI, E. Sealed-glass proofs: Using transparent enclaves to
prove and sell knowledge. In 2nd IEEE European Symposium on
Security and Privacy (Euro S&P) (2017), IEEE.

[44] TSAI, C.-C., ARORA, K. S., BANDI, N., JAIN, B., JANNEN, W.,
JOHN, J., KALODNER, H. A., KULKARNI, V., OLIVEIRA, D.,
AND PORTER, D. E. Cooperation and security isolation of library
OSes for multi-process applications. In Proceedings of the Ninth
European Conference on Computer Systems (2014), ACM, p. 9.



[45] TSAI, C.-C., PORTER, D. E., AND VIJ, M. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In 2017
USENIX Annual Technical Conference (USENIX ATC) (2017),
USENIX Association.

[46] WANG, W., CHEN, G., PAN, X., ZHANG, Y., WANG, X., BIND-
SCHAEDLER, V., TANG, H., AND GUNTER, C. A. Leaky caul-
dron on the dark land: Understanding memory side-channel haz-
ards in SGX. arXiv preprint arXiv:1705.07289 (2017).

[47] WEICHBRODT, N., KURMUS, A., PIETZUCH, P., AND KAPITZA,
R. Asyncshock: Exploiting synchronisation bugs in Intel SGX
enclaves. In European Symposium on Research in Computer
Security (ESORICS) (2016), Springer.

[48] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In
2015 IEEE Symposium on Security and Privacy (2015), IEEE,
pp. 640–656.

[49] YAROM, Y., AND BENGER, N. Recovering OpenSSL ECDSA
nonces using the flush+ reload cache side-channel attack. IACR
Cryptology ePrint Archive 2014 (2014), 140.

[50] YAROM, Y., AND FALKNER, K. Flush+reload: A high resolution,
low noise, L3 cache side-channel attack. In 23rd USENIX Security
Symposium (2014), USENIX Association, pp. 719–732.

A Libgcrypt Page Sets

For completeness, we provide the full page sets for the
different versions of our Libgcrypt attacks below. The
PTE sets are based on plain Libgcrypt, Libgpg-error, and
Graphene-libc binaries, as generated by gcc v5.2.1 from
the default ./configure && make invocation. The pro-
vided addresses are relative to the load addresses used by
Graphene, as explained in Section 4.

1 #if CONFIG_SPY_GCRY && (CONFIG_SPY_GCRY_VERSION == 163)
2 #define SET_ADRS (GCRYLIB_ADRS + 0xa7780) // _gcry_mpi_set
3 #define TST_ADRS (GCRYLIB_ADRS + 0xa0a00) // _gcry_mpi_test_bit
4 #define MULP_ADRS (GCRYLIB_ADRS + 0xa97c0) // _gcry_mpi_ec_mul_point
5 #define TDIV_ADRS (GCRYLIB_ADRS + 0xa1310) // _gcry_mpi_tdiv_qr
6 #define ERR_ADRS (GPG_ERR_ADRS + 0x0b6d0) // gpg_err_set_errno
7 #define FREE_ADRS (GCRYLIB_ADRS + 0x0ce90) // _gcry_free
8 #define PFREE_ADRS (GCRYLIB_ADRS + 0x110a0) // _gcry_private_free
9 #define XMALLOC_ADRS (GCRYLIB_ADRS + 0x0d160) // _gcry_xmalloc

10 #define MUL_ADRS (GCRYLIB_ADRS + 0xa6920) // _gcry_mpih_mul
11 #define PMALLOC_ADRS (GCRYLIB_ADRS + 0x10f80) // _gcry_private_malloc
12
13 #define MONITOR_ADRS SET_ADRS
14
15 void construct_pte_set(spy_pte_set_t *set)
16 {
17 pr_info("gsgx-spy: constructing A/D PTE set for gcry v1.6.3\n");
18 add_to_pte_set(set, TST_ADRS);
19 add_to_pte_set(set, MULP_ADRS);
20 add_to_pte_set(set, TDIV_ADRS);
21 add_to_pte_set(set, ERR_ADRS);
22 add_to_pte_set(set, FREE_ADRS);
23 add_to_pte_set(set, PFREE_ADRS);
24 add_to_pte_set(set, XMALLOC_ADRS);
25 add_to_pte_set(set, MUL_ADRS);
26 add_to_pte_set(set, PMALLOC_ADRS);
27 }
28
29 #elif CONFIG_SPY_GCRY && (CONFIG_SPY_GCRY_VERSION == 175)
30 #if CONFIG_FLUSH_FLUSH
31 #define ERRNOLOC_ADRS (LIBC_ADRS + 0x20590) // __errno_location
32 #define MULP_ADRS (GCRYLIB_ADRS + 0xca220) // _gcry_mpi_ec_mul_point
33 #define TST_ADRS (GCRYLIB_ADRS + 0xc10d0) // _gcry_mpi_test_bit
34 #define _GPGRT_ADRS (GPG_ERR_ADRS + 0x2bb0) // _gpgrt_lock_lock
35 #define GPGRT_ADRS (GPG_ERR_ADRS + 0xb750) // gpgrt_lock_lock
36 #define INT_FREE_ADRS (LIBC_ADRS + 0x7b110) // _int_free
37 #define PLT_ADRS (GCRYLIB_ADRS + 0xab30) // __errno_location@plt
38 #define DO_MALLOC_ADRS (GCRYLIB_ADRS + 0xe380) // do_malloc
39
40 #define MONITOR_ADRS ERRNOLOC_ADRS
41
42 void construct_pte_set(spy_pte_set_t *set)
43 {
44 pr_info("gsgx-spy: constructing F+R PTE set for gcry v1.7.5\n");
45 add_to_pte_set(set, MULP_ADRS);
46 add_to_pte_set(set, TST_ADRS);

47 add_to_pte_set(set, _GPGRT_ADRS);
48 add_to_pte_set(set, GPGRT_ADRS);
49 add_to_pte_set(set, INT_FREE_ADRS);
50 add_to_pte_set(set, PLT_ADRS);
51 add_to_pte_set(set, DO_MALLOC_ADRS);
52 }
53
54 #else /* !CONFIG_FLUSH_FLUSH */
55 #define TST_ADRS (GCRYLIB_ADRS + 0xc10d0) // _gcry_mpi_test_bit
56 #define ADDP_ADRS (GCRYLIB_ADRS + 0xc9bc0) // _gcry_mpi_ec_add_p
57 #define MULP_ADRS (GCRYLIB_ADRS + 0xca220) // _gcry_mpi_ec_mul_p
58 #define FREE_ADRS (GCRYLIB_ADRS + 0x0f390) // _gcry_free
59 #define ADD_ADRS (GCRYLIB_ADRS + 0xc0a10) // _gcry_mpi_add
60
61 #define MONITOR_ADRS TST_ADRS
62
63 void construct_pte_set(spy_pte_set_t *set)
64 {
65 pr_info("gsgx-spy: constructing A/D PTE set for gcry v1.7.5\n");
66 add_to_pte_set(set, ADDP_ADRS);
67 add_to_pte_set(set, MULP_ADRS);
68
69 add_to_pte_set(set, FREE_ADRS);
70 add_to_pte_set(set, ADD_ADRS);
71 }
72 #endif
73 #endif


	Introduction
	Background
	Intel SGX
	Attacker Model and Assumptions
	Controlled-Channel Attacks

	Stealthy Page Table-Based Attacks
	Monitoring Page Table Entries
	Monitoring Repeated Accesses
	Inferring Page Access Patterns

	Implementation
	Evaluation
	IPI Latency Microbenchmarks
	Attacking Libgcrypt EdDSA

	Discussion and Mitigations
	Related Work
	Conclusion
	Libgcrypt Page Sets

